【題目】如圖,點(diǎn)E為矩形ABCD外一點(diǎn),AE=DE,連接EB、EC分別與AD相交于點(diǎn)F、G.求證:

(1)EAB≌△EDC;

(2)EFG=EGF.

【答案】(1)證明見試題解析;(2)證明見試題解析

【解析】

試題分析:(1)先根據(jù)四邊形ABCD是矩形,得AB=DC,BAD=CDA=90°.再根據(jù)EA=ED,得EAD=EDA,等式的性質(zhì)得到EAB=EDC.利用SAS即可證明EAB≌△EDC;

(2)由EAB≌△EDC,得AEF=DEG,三角形外角的性質(zhì)得出EFG=EAF+AEF,EGF=EDG+DEG,即可證明EFG=EGF.

試題解析:(1)四邊形ABCD是矩形,AB=DC,BAD=CDA=90°.EA=ED,∴∠EAD=EDA,∴∠EAB=EDC.在EAB與EDC中,EA=ED,EAB=EDC,AB=DC∴△EAB≌△EDC(SAS);

(2)∵△EAB≌△EDC,∴∠AEF=DEG,∵∠EFG=EAF+AEF,EGF=EDG+DEG,∴∠EFG=EGF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題:

1713620;

2)(49(+915)+(9;

3 ;

4

5)-1100-(1 0.5×3-(-32];

6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰ABC中,AC=BC,以BC為直徑的O分別與AB,AC相交于點(diǎn)D,E,過點(diǎn)D作DFAC,垂足為點(diǎn)F.

(1)求證:DF是O的切線;

(2)分別延長(zhǎng)CB,F(xiàn)D,相交于點(diǎn)G,A=60°,O的半徑為6,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OD平分∠BOC,OE平分∠AOC,∠BOC=60°,∠AOC=58°.

(1)求出∠AOB及其補(bǔ)角的度數(shù);

(2)①請(qǐng)求出∠DOC和∠AOE的度數(shù);

②判斷∠DOE與∠AOB是否互補(bǔ),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABN△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2

1)求證:BD=CE;

2)求證:∠M=∠N

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)O為直線AB上一點(diǎn),將一個(gè)直角三角板COD的直角頂點(diǎn)放在點(diǎn)O處,并使OC邊始終在直線AB的上方,OE平分∠BOC

1)如圖1,若∠DOE70°,則∠AOC =___________°;

2)如圖1,若∠DOEα,求∠AOC的度數(shù);(用含α的式子表示)

3)如圖2,在(2)的條件下,若在∠AOC的內(nèi)部有一條射線OF,滿足∠BOE =(AOF-DOE),試確定∠AOF與∠DOE之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知數(shù)軸上有三點(diǎn)AB,C.點(diǎn)A,C對(duì)應(yīng)的數(shù)分別是-4020,點(diǎn)BAC的中點(diǎn).

1)請(qǐng)直接寫出點(diǎn)B對(duì)應(yīng)的數(shù): ;

2)如圖2,動(dòng)點(diǎn)P,Q分別從A,C兩點(diǎn)同時(shí)出發(fā)向左運(yùn)動(dòng),點(diǎn)P,Q的速度分別為2個(gè)單位長(zhǎng)度/秒,3個(gè)單位長(zhǎng)度/秒,點(diǎn)E為線段PQ的中點(diǎn).設(shè)運(yùn)動(dòng)的時(shí)間為t秒(t > 0).

①當(dāng)t為何值時(shí),點(diǎn)B與點(diǎn)E的距離是5個(gè)單位長(zhǎng)度?

②當(dāng)點(diǎn)E在點(diǎn)A的右側(cè)時(shí),mAE+QC的值不隨時(shí)間的變化而改變,請(qǐng)求出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

閱讀材料:

數(shù)軸是學(xué)習(xí)有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,這樣能夠運(yùn)用數(shù)形結(jié)合的方法解決一些問題.例如,兩個(gè)有理數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)之間的距離可以用這兩個(gè)數(shù)的差的絕對(duì)值表示;

在數(shù)軸上,有理數(shù)31對(duì)應(yīng)的兩點(diǎn)之間的距離為|3﹣1|=2;

在數(shù)軸上,有理數(shù)5與﹣2對(duì)應(yīng)的兩點(diǎn)之間的距離為|5﹣(﹣2)|=7;

在數(shù)軸上,有理數(shù)﹣23對(duì)應(yīng)的兩點(diǎn)之間的距離為|﹣2﹣3|=5;

在數(shù)軸上,有理數(shù)﹣8與﹣5對(duì)應(yīng)的兩點(diǎn)之間的距離為|﹣8﹣(﹣5)|=3;……

如圖1,在數(shù)軸上有理數(shù)a對(duì)應(yīng)的點(diǎn)為點(diǎn)A,有理數(shù)b對(duì)應(yīng)的點(diǎn)為點(diǎn)B,A,B兩點(diǎn)之間的距離表示為|a﹣b||b﹣a|,記為|AB|=|a﹣b|=|b﹣a|.

解決問題:

(1)數(shù)軸上有理數(shù)﹣10與﹣5對(duì)應(yīng)的兩點(diǎn)之間的距離等于   ;數(shù)軸上有理數(shù)x與﹣5對(duì)應(yīng)的兩點(diǎn)之間的距離用含x的式子表示為   ;若數(shù)軸上有理數(shù)x與﹣1對(duì)應(yīng)的兩點(diǎn)A,B之間的距離|AB|=2,則x等于   ;

聯(lián)系拓廣:

(2)如圖2,點(diǎn)M,N,P是數(shù)軸上的三點(diǎn),點(diǎn)M表示的數(shù)為4,點(diǎn)N表示的數(shù)為﹣2,動(dòng)點(diǎn)P表示的數(shù)為x.

請(qǐng)從A,B兩題中任選一題作答,我選擇   題.

A.①若點(diǎn)P在點(diǎn)M,N兩點(diǎn)之間,則|PM|+|PN|=   

②若|PM|=2|PN|,即點(diǎn)P到點(diǎn)M的距離等于點(diǎn)P到點(diǎn)N的距離的2倍,則x等于   

B.①若點(diǎn)P在點(diǎn)M,N之間,則|x+2|+|x﹣4|=   ;

|x+2|+|x﹣4|═10,則x=   ;

②根據(jù)閱讀材料及上述各題的解答方法,|x+2|+|x|+|x﹣2|+|x﹣4|的最小值等于   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.

(1)求二次函數(shù)的表達(dá)式;

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),MNB面積最大,試求出最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案