【題目】已知四邊形ABCD中,AB=10,BC=8,CD=∠DAC=45°,∠DCA=15°.
(1)求△ADC的面積;
(2)若E為AB的中點,求線段CE的長。
【答案】(1);(2)CE=5.
【解析】
(1)過點C作CF⊥AD,交AD延長線于點F,構(gòu)造含有30度角的直角△CFD,通過解該直角三角形求得DF、CF的長度,進而利用等腰直角△ACF的性質(zhì)求得AD的長度,結(jié)合三角形的面積公式解答即可;
(2)由勾股定理的逆定理得到△ABC是直角三角形,由“直角三角形斜邊上的中線等于斜邊的一半”解答.
(1)過點C作CF⊥AD,交AD延長線于點F,
∵∠DAC=45°,∠DCA=15°,
∴∠CDF=∠DAC+∠DCA=45°+15°=60°,
在Rt△CFD中,CD=2,
∴DF=CD=,CF=,
∴AD=AFDF=3,
∴S△ADC=AD×CF=×(2)×3=93.
(2)在Rt△AFC中,∵∠DAC=45°,CF=3,
∴AC=CF=×3=6,
在△ABC中,∵AC2+BC2=62+82=AB2
∴△ABC是直角三角形,
又∵E為AB中點,
∴CE=AB=×10=5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,對角線AC、BD相交于點O,AB⊥AC,AB=3cm,BC=5cm.點P從A點出發(fā)沿AD方向勻速運動,速度為1cm/s.連結(jié)PO并延長交BC于點Q,設(shè)運動時間為t(0<t<5).
(1)當(dāng)t為何值時,四邊形ABQP是平行四邊形?
(2)設(shè)四邊形OQCD的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使點O在線段AP的垂直平分線上?若存在,求出t的值;若不存在,請說明理由.
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)把下列各數(shù)分別填在相應(yīng)的集合里:
, , ,,0, ,……
正有理數(shù)集合:{ …}
整數(shù)集合:{ …}
分數(shù)集合:{ …}
(2)在下面的數(shù)軸上表示下列各數(shù),并按照從小到大的順序用“<”號連接起來
,,, ,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】公司銷售部門提供了某種產(chǎn)品銷售收入(記為: /元)、銷售成本(記為:/元)、銷售量(記為: /噸)方面的信息如下:
①時,;
②時, ;
③與成正比例函數(shù)關(guān)系;④與成一次函數(shù)關(guān)系.
依據(jù)上述信息,解決下列問題:
(1)分別求出與的函數(shù)關(guān)系式;
(2)銷售量為多少噸時,銷售收入與銷售成本相同?
(3)若銷售量為噸時,求公司的利潤. (利潤=銷售收入-銷售成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[材料閱讀]
材料一:如圖,,點在的平分線上,,點,D分別在上.可求得如下結(jié)論:,為定值.
材料二(性質(zhì)):四邊形的內(nèi)角和為.
[問題解決]
(1)如圖,點在的平分線上,的邊與交于點,且,求的值(用含的式子表示).
(2)如圖,在平面直角坐標(biāo)系中,直線與軸,軸分別交于兩點,點是的中點,,與軸交于點,與軸的正半軸交于點,連接.求的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】哈市某專賣店銷售某品牌服裝,設(shè)服裝進價為80元,當(dāng)每件服裝售價為240元時,月銷售為200件,該專賣店為提高經(jīng)營利潤,準(zhǔn)備采取降價的方式進行促銷,經(jīng)市場調(diào)查發(fā)現(xiàn):當(dāng)每件價格每下降10元時,月銷售量就會增加20件,設(shè)每件服裝售價為x(元),該專賣店的月利潤為y(元).
(1)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)該專賣店要獲得最大月利潤,售價應(yīng)定為每件多少元?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學(xué)興趣小組的同學(xué)在斜坡底P處測得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測得該塔的塔頂B的仰角為76°.
求:(1)坡頂A到地面PO的距離;
(2)古塔BC的高度(結(jié)果精確到1米).
(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD 中,點F是BC延長線上一點,過點B作BE⊥DF于點E,交CD于點G,連接CE.
(1)若正方形ABCD邊長為3,DF=4,求CG的長;
(2)求證:EF+EG=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠CAB=70°,將△ABC繞點A逆時針旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數(shù)是( )
A. 70° B. 35° C. 40° D. 90°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com