【題目】如圖,直線ABCD相交于點O,OEABOFCD,OP是∠BOC的平分線,

⑴寫出所有∠EOC的補角 ;

⑵如果∠AOD=40°,求∠POF的度數(shù).

【答案】1)∠EOD,∠AOF都是∠EOC的補角;(2)∠POD=70°

【解析】

1)首先根據(jù)垂直定義可得∠AOE=DOF=90°,然后再證明∠EOD=AOF,根據(jù)補角定義可得∠EOD,∠AOF都是∠EOC的補角;

2)根據(jù)對頂角相等,可得∠BOC的度數(shù),根據(jù)角平分線的定義,可得∠COP,根據(jù)余角的定義,可得答案.

1)∵OEAB,OFCD

∴∠AOE=DOF=90°,

∴∠EOA+AOD=DOF+AOD,

即:∠EOD=AOF,

∵∠EOC+EOD=180°,

∴∠AOF+EOC=180°,

∴∠EOD,∠AOF都是∠EOC的補角;

2)由對頂角相等,得∠BOC=AOD=40°,

OP是∠BOC的平分線,得∠COP=BOC=20°,

由余角的定義,得∠POD=COD-COP=90°-20°=70°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形OABC中,O為平面直角坐標系的原點,點A坐標為(a,0),點C的坐標為(0,b),且ab滿足|b6|0,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著OCBAO的線路移動.

1a______________,b_____________,點B的坐標為_______________

2)當點P移動4秒時,請指出點P的位置,并求出點P的坐標;

3)在移動過程中,當點Px軸的距離為5個單位長度時,求點P移動的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABAC,PBPC,給出下面結(jié)論:①BP=CP,②EBEC,③ADBC,④EA平分∠BEC,其中正確的結(jié)論有(  )

A.①②④B.①③④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。

A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,銳角△ABC的兩條高BD、CE相交于點O,且OB=OC.

(1)求證:△ABC是等腰三角形;

(2)判斷點O是否在∠BAC的角平分線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線 l 上有 A、B 兩點,AB=12cm,點 O 是線段 AB 上的一點,OA=2OB.

1OA=_______cm,OB=________cm;

2)若點 C 是線段AB的中點,求線段 CO 的長;

3)若動點 P、Q分別從 A、B同時出發(fā),向右運動,點P的速度為2 厘米/秒,點Q的速度為1厘米/秒,設運動時間為x秒,當 x=_____秒時,PQ=4cm

4)有兩條射線 OC、OD 均從射線 OA 同時繞點O順時針方向旋轉(zhuǎn),OC旋轉(zhuǎn)的速度為6/秒,OD 旋轉(zhuǎn)的速度為2/.OCOD第一次重合時,OC、OD 同時停止旋轉(zhuǎn),設旋轉(zhuǎn)時間為 t 秒,當t為何值時,射線OCOD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】永祚寺雙塔,又名凌霄雙塔,是山西省會太原現(xiàn)存古建筑中最高的建筑,位于太原市城區(qū)東南向山腳畔.數(shù)學活動小組的同學對其中一個塔進行了測量.測量方法如下:如圖所示,間接測得該塔底部點B到地面上一點E的距離為48 m,塔的頂端為點A,ABCB,在點E處豎直放一根標桿其頂端為D,BE的延長線上找一點C,使C,DA三點在同一直線上,測得CE2 m.

(1)方法1,已知標桿DE2.2 m求該塔的高度;

(2)方法2,測量得∠ACB47.5°已知tan47.5°1.09求該塔的高度;

(3)假如該塔的高度在方法1和方法2測得的結(jié)果之間,你認為該塔的高度大約是多少米?

   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知ABCD,∠B20°,∠D110°

1)若∠E50°,請直接寫出∠F的度數(shù);

2)探索∠E與∠F之間滿足的數(shù)量關(guān)系,并說明理由;

3)如圖2EP平分∠BEF,FG平分∠EFDFG的反向延長線交EP于點P,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABE△ADC△ABC分別沿著AB、AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為__度.

查看答案和解析>>

同步練習冊答案