分別以▱ABCD(∠CDA≠90°)的三邊AB,CD,DA為斜邊作等腰直角三角形,△ABE,△CDG,△ADF.
(1)如圖1,當(dāng)三個(gè)等腰直角三角形都在該平行四邊形外部時(shí),連接GF,EF.請(qǐng)判斷GF與EF的關(guān)系(只寫結(jié)論,不需證明);
(2)如圖2,當(dāng)三個(gè)等腰直角三角形都在該平行四邊形內(nèi)部時(shí),連接GF,EF,(1)中結(jié)論還成立嗎?若成立,給出證明;若不成立,說(shuō)明理由.
解:(1)∵四邊形ABCD是平行四邊形,
∴AB=CD,∠DAB+∠ADC=180°,
∵△ABE,△CDG,△ADF都是等腰直角三角形,
∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°,
∴∠GDF=∠GDC+∠CDA+∠ADF=90°+∠CDA,
∠EAF=360°﹣∠BAE﹣∠DAF﹣∠BAD=270°﹣(180°﹣∠CDA)=90°+∠CDA,
∴∠FDG=∠EAF,
∵在△EAF和△GDF中,
,
∴△EAF≌△GDF(SAS),
∴EF=FG,∠EFA=∠DFG,即∠GFD+∠GFA=∠EFA+∠GFA,
∴∠GFE=90°,
∴GF⊥EF,GF=EF;
(2)GF⊥EF,GF=EF成立;
理由:∵四邊形ABCD是平行四邊形,
∴AB=CD,∠DAB+∠ADC=180°,
∵△ABE,△CDG,△ADF都是等腰直角三角形,
∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°,
∴∠BAE+∠DAF+∠EAF+∠ADF+∠FDC=180°,
∴∠EAF+∠CDF=45°,
∵∠CDF+∠GDF=45°,
∴∠FDG=∠EAF,
∵在△GDF和△EAF中,
,
∴△GDF≌△EAF(SAS),
∴EF=FG,∠EFA=∠DFG,即∠GFD+∠GFA=∠EFA+∠GFA,
∴∠GFE=90°,
∴GF⊥EF,GF=EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列計(jì)算正確的是( 。
A. 3x+3y=6xy B. a2•a3=a6 C. b6÷b3=b2 D. (m2)3=m6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,直線y=mx與雙曲線y=相交于A、B兩點(diǎn),A點(diǎn)的坐標(biāo)為(1,2),AC⊥x軸于C,連結(jié)BC.
(1)求反比例函數(shù)的表達(dá)式;
(2)求△ABC的面積;
(3)根據(jù)圖象直接寫出當(dāng)mx>時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,由幾個(gè)相同的小正方體搭成的幾何體的主視圖和俯視圖,組成這個(gè)幾何體的小正方體的個(gè)數(shù)最多是( 。
A. 7個(gè) B. 8個(gè) C. 9個(gè) D. 10個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
實(shí)數(shù)tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相鄰兩個(gè)3之間依次多一個(gè)1),其中無(wú)理數(shù)的個(gè)數(shù)是( 。
A. 4 B. 2 C. 1 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
菱形ABCD的一條對(duì)角線長(zhǎng)為6,邊AB的長(zhǎng)為方程y2﹣7y+10=0的一個(gè)根,則菱形ABCD的周長(zhǎng)為( )
A. 8 B. 20 C. 8或20 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,MN是⊙O的直徑,QN是⊙O的切線,連接MQ交⊙O于點(diǎn)H,E為上一點(diǎn),連接ME,NE,NE交MQ于點(diǎn)F,且ME2=EF•EN.
(1)求證:QN=QF;
(2)若點(diǎn)E到弦MH的距離為1,cos∠Q=,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com