【題目】已知△ABC中,∠ACB =90°,∠A=30°,點(diǎn)D在直線AC上,CD=CB,點(diǎn)E在線段AC上,AE=2EC,連接EB、BD,則∠EBD=____________
【答案】15°或75°.
【解析】
根據(jù)題意,分情況作出圖形,根據(jù)含30°的直角三角形特點(diǎn)分別進(jìn)行計(jì)算即可.
如圖,①點(diǎn)D在線段AC上,設(shè)BC為1,∴CD=1
∵∠ACB =90°,∠A=30°,
∴AB=2,AC=,∠CBD=45°,
∵AE=2EC
∴CE=AC=
∴BE==
∴∠CBE=30°,
∴∠EBD=∠CBD-∠CBE=15°;
如圖,②點(diǎn)D在直線AC上,設(shè)BC為1,∴CD=1
∵∠ACB =90°,∠A=30°,
∴AB=2,AC=,∠CBD=45°,
∵AE=2EC
∴CE=AC=
∴BE==
∴∠CBE=30°,
∴∠EBD=∠CBD+∠CBE=75°;
故填:15°或75°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,使∠BOC=70°,將一個(gè)直角三角板的直角頂點(diǎn)放在點(diǎn)O處(∠DOE=90°).
(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE= °;
(2)如圖②,將直角三角板DOE繞點(diǎn)O轉(zhuǎn)動(dòng),若OD恰好平分∠BOC,求∠AOE的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中BA=BC,點(diǎn)D是AB延長(zhǎng)線上一點(diǎn),DF⊥AC于F交BC于E,
求證:△DBE是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小淇在說(shuō)明 “直角三角形斜邊上的中線等于斜邊的一半”是真命題,部分思路如下:如圖,在∠ACB內(nèi)做∠BCD=∠B,CD與AB相交于點(diǎn)D,…….請(qǐng)根據(jù)以上思路,完成證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】建設(shè)中的大外環(huán)路是我市的一項(xiàng)重點(diǎn)民生工程.某工程公司承建的一段路基工程的施工土方量為120萬(wàn)立方,原計(jì)劃由公司的甲、乙兩個(gè)工程隊(duì)從公路的兩端同時(shí)相向施工150天完成.由于特殊情況需要,公司抽調(diào)甲隊(duì)外援施工,由乙隊(duì)先單獨(dú)施工40天后甲隊(duì)返回,兩隊(duì)又共同施工了110天,這時(shí)甲乙兩隊(duì)共完成土方量103.2萬(wàn)立方.
(1)問(wèn)甲、乙兩隊(duì)原計(jì)劃平均每天的施工土方量分別為多少萬(wàn)立方?
(2)在抽調(diào)甲隊(duì)外援施工的情況下,為了保證150天完成任務(wù),公司為乙隊(duì)新購(gòu)進(jìn)了一批機(jī)械來(lái)提高效率,那么乙隊(duì)平均每天的施工土方量至少要比原來(lái)提高多少萬(wàn)立方才能保證按時(shí)完成任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,作ED⊥EB交AB于點(diǎn)D,⊙O是△BED的外接圓.
(1)求證:AC是⊙O的切線;
(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,D、E分別是邊AB、BC上的點(diǎn),AE和CD交于點(diǎn)F,且∠CFE=∠B。
(1)如圖1,求證:∠AEC=∠CDB;
(2)如圖2,過(guò)點(diǎn)C作CG⊥AC,交AB于點(diǎn)G,CD⊥CB,∠ACD =∠CAB-∠B,求證:AC=GC;
(3)如圖3,在(2)的條件下,CE+CD=AE,CG=,求線段BC的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)B的坐標(biāo)為(6,4).
(1)請(qǐng)用直尺(不帶刻度)和圓規(guī)作一條直線AC,它與x軸和y軸的正半軸分別交于點(diǎn)A和點(diǎn)C,且使∠ABC=90°,△ABC與△AOC的面積相等.(作圖不必寫(xiě)作法,但要保留作圖痕跡.)
(2)問(wèn):(1)中這樣的直線AC是否唯一?若唯一,請(qǐng)說(shuō)明理由;若不唯一,請(qǐng)?jiān)趫D中畫(huà)出所有這樣的直線AC,并寫(xiě)出與之對(duì)應(yīng)的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分線相交于點(diǎn)D,∠ADC=125°,求∠ACB和∠BAC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com