【題目】如圖,小明在校運動會上擲鉛球時,鉛球的運動路線是拋物線y=﹣ (x+1)(x﹣7).鉛球落在A點處,則OA長=米.

【答案】7
【解析】當(dāng)y=0時代入解析式y(tǒng)=﹣ (x+1)(x﹣7).求出x的值即可.

解:由題意,得

當(dāng)y=0時,0=﹣ (x+1)(x﹣7),

解得:x1=﹣1(舍去),x2=7.

所以答案是:7.

【考點精析】通過靈活運用拋物線與坐標(biāo)軸的交點,掌握一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知ABC三個頂點的坐標(biāo)分別為A(-2,0),B(-4,4),C3,-3).

1)畫出ABC;

2)畫出ABC向右平移3個單位長度,再向上平移4個單位長度后得到的A1B1C1;

3)求出A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】讀題畫圖計算并作答

畫線段AB=3 cm,在線段AB上取一點K,使AK=BK,在線段AB的延長線上取一點C,使AC=3BC,在線段BA的延長線取一點D,使AD=AB.

(1)求線段BC、DC的長?

(2)K是哪些線段的中點?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,其中A),B,),C,),將這個正方形向左平移3個單位長度,再向上平移1個單位長度,得正方形

1)畫出平移后的正方形;

2)寫出點D和點D的坐標(biāo);

3)寫出線段的位置和大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=BC,∠ABC=45°,點DAC的中點,連接BD,作AEBCE,交BD于點F,點GBC的中點,連接FG,過點BBHABFG的延長線于H

1)若AB=3,求AF的長;

2)求證;BH+2CE=AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB∥CD,直線EF分別與AB、CD交于點MN,點H在直線CD上,HG⊥EF于點G,過點GGP∥AB.則下列結(jié)論:①∠AMF∠DNF是對頂角;②∠PGM∠DNF;③∠BMN+∠GHN90°;④∠AMG+∠CHG270°.其中正確結(jié)論的個數(shù)(

A.1B.2 C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲布袋中有三個紅球,分別標(biāo)有數(shù)字1,2,3;乙布袋中有三個白球,分別標(biāo)有數(shù)字2,3,4.這些球除顏色和數(shù)字外完全相同.小亮從甲袋中隨機摸出一個紅球,小剛從乙袋中隨機摸出一個白球.
(1)用畫樹狀圖(樹形圖)或列表的方法,求摸出的兩個球上的數(shù)字之和為6的概率;
(2)小亮和小剛做游戲,規(guī)則是:若摸出的兩個球上的數(shù)字之和為奇數(shù),小亮勝;否則,小剛勝.你認(rèn)為這個游戲公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)化簡求值:,其中x=﹣

2)小王購買了一套經(jīng)濟適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:

用含x、y的代數(shù)式表示廚房的面積是_____m2;臥室的面積是______m2

寫出用含x、y的代數(shù)式表示這套房的總面積是多少平方米?

當(dāng)x=3,y=2時,求這套房的總面積是多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABCD的頂點的坐標(biāo)分別為A(﹣6,9),B(0,9),C(3,0),D(﹣3,0),拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)過A、B兩點,頂點為M.

(1)若拋物線過點C,求拋物線的解析式;
(2)若拋物線的頂點M落在△ACD的內(nèi)部(包括邊界),求a的取值范圍;
(3)若a<0,連結(jié)CM交線段AB于點Q(Q不與點B重合),連接DM交線段AB于點P,設(shè)S1=SADP+SCBQ , S2=SMPQ , 試判斷S1與S2的大小關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案