【題目】如圖,∠AOB=∠COD,若∠AOD=110°,∠BOC=70°,則以下結論正確的有( )
①∠AOC=∠BOD=90°;②∠AOB=20°;③∠AOB=∠AOD-∠AOC;④∠AOB=∠BOD.
A. 1個B. 2個C. 3個D. 4個
【答案】C
【解析】
根據已知條件和圖形可以得到:∠AOD=∠BOC+2∠COD=110°,則∠AOB=∠COD=20°,由此可以對以下選項通過計算可以做出正確的判定.
解:如圖,
∵∠AOB=∠COD,∠AOD=110°,∠BOC=70°,
∴∠AOD=∠BOC+2∠COD=70°+2∠COD=110°,則∠AOB=∠COD=20°.
①∵∠AOB=∠COD,
∴∠BOC+∠AOB=∠BOC+∠COD=90°,即∠AOC=∠BOD=90°,故①正確;
②∠AOB=∠COD=20°.故②正確;
③由①知,∠AOC=∠BOD=90°,
∴∠AOB=∠AOD-∠BOD=∠AOD-∠AOC,
故③正確;
④∵∠AOB=20°,∠BOD=90°,
∴∠AOB=∠BOD.
故④錯誤.
綜上所述,正確的結論有3個.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù) 的圖象如圖所示,反比例函數(shù) 與正比例函數(shù) 在同一坐標系中的大致圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l1:y=kx+b(k≠0)與x軸、y軸分別交于A、B兩點,與直線l2:y=3x交于點C,其中點C的坐標為(,c),點B的坐標為(0,3).
(1)求點C的坐標;
(2)求直線l1的表達式;
(3)在x軸上有一點D(3,0),求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB于點D,AE⊥BC于點E,AE、CD交于點F,且∠DBF=45°.
(1)若AF=,BF=,求AB的長;
(2)求證:AB﹣CF=BF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】電力公司為鼓勵市民節(jié)約用電,采取按月用電量分段收費辦法.若某戶居民每月應交電費y(元)與用電量x(度)的函數(shù)圖象是一條折線(如圖所示),根據圖象解下列問題:
(1) 分別寫出當0≤x≤100和x>100時,y與x的函數(shù)關系式
(2) 利用函數(shù)關系式,說明電力公司采取的收費標準
(3) 若該用戶某月用電62度,則應繳費多少元?若該用戶某月繳費105元時,則該用戶該月用了多少度電?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和父親在一直線公路AB上進行(A→B→A)往返跑訓練,兩人同時從A點出發(fā),父親以較快的速度勻速跑到點B休息2分鐘后立即原速跑回A點,小明先勻速慢跑了3分鐘后,把速度提高到原來的倍,又經過6分鐘后超越了父親一段距離,小明又將速度降低到出發(fā)時的速度,并以這一速度勻速跑到B點看到休息的父親,然后立即以出發(fā)時的速度跑回A點,若兩人之間的距離記為y(米),小明的跑步時間記為x(分),y和x的部分函數(shù)關系如圖所示,則當父親回到A點時小明距A點______米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=2,N為AB上一點,且AN=1,AD=,∠BAC的平分線交BC于點D,M是AD上的動點,連接BM、MN,則BM+MN的最小值是( 。
A. B. 2C. 1D. 3
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com