【題目】在平面直角坐標系xOy中,點Ax1,y1),Bx2,y2),若x1x2+y1y20,且A,B均不為原點,則稱AB互為正交點.比如:A11),B2,﹣2),其中1×2+1×(﹣2)=0,那么AB互為正交點.

1)點PQ互為正交點,P的坐標為(﹣2,3),

如果Q的坐標為(6,m),那么m的值為多少;

如果Q的坐標為(xy),求yx之間的關(guān)系式;

2)點MN互為正交點,直接寫出∠MON的度數(shù);

3)點C,D是以(02)為圓心,半徑為2的圓上的正交點,以線段CD為邊,構(gòu)造正方形CDEF,圓心F在正方形CDEF的外部,求線段OE長度的取值范圍.

【答案】1m4,yx;(2)∠MON90°;(3)符合條件的OE的范圍為:22OE2+2

【解析】

1)①②根據(jù)互為正交點的定義,列出方程即可解決問題;

2)設(shè)Mm,n),Np,q),推出直線OM的解析式為yx,直線ON的解析式為yx,由點MN互為正交點,可得mp+nq0,推出kOMkON=﹣1即可解決問題;

3)如圖1中,連接EFCDH,作FQCDQ.尋找特殊位置,求出OE的最大值以及最小值即可.

1)①由題意:﹣2×6+3m0,

解得m4,

故答案為4

②由題意:﹣2x+3y0

yx

2)設(shè)Mm,n),Np,q),

∴直線OM的解析式為yx,直線ON的解析式為yx,

∵點MN互為正交點,

mp+nq0,

kOMkON=﹣1,

OMON

∴∠MON90°

3)如圖1中,連接EFCDH,作FQCDQ

由題意DFCF2,CDDE2,DQQCFQ,

FQDE

QHDHFQDEFHEH12,

HQ,FH,

EH2FH,

EFFH+EH2

OFE中,EFOFOEEF+OF

∴當點Ey軸的正半軸上時,O、F、E共線,此時OE的值最大,最大值為2+2

∵原點O在正方形CDEF的外部,

∴當點Ey軸負半軸上時,OE的值最小,最小值為22

∴符合條件的OE的范圍為:22≤OE≤2+2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形AEHC是由三個全等矩形拼成的,AHBEBF、DF、DG、CG分別交于點P、Q、K、MN.設(shè)△BPQ,△DKM,△CNH的面積依次為S1,S2S3.若S1+S320,則S2的值為(  )

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線lyxx軸交于點B1,以OB1為邊長作等邊A1OB1,過點A1A1B2平行于x軸,交直線l于點B2,以A1B2為邊長作等邊A2A1B2,過點A2A1B2平行于x軸,交直線l于點B3,以A2B3為邊長作等邊A3A2B3,,則等邊A2017A2018B2018的邊長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MNAD相交于點M,與BD相交于點N,連接BM,DN

1)求證:四邊形BMDN是菱形;

2)若AB=4,AD=8,求MD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某單位有職工200人,其中青年職工(2035歲),中年職工(3550歲),老年職工(50歲及以上)所占比例如扇形統(tǒng)計圖所示.

為了解該單位職工的健康情況,小張、小王和小李各自對單位職工進行了抽樣調(diào)查,將收集的數(shù)據(jù)進行了整理,繪制的統(tǒng)計表分別為表1、表2和表3

1:小張抽樣調(diào)查單位3名職工的健康指數(shù)

年齡

26

42

57

健康指數(shù)

97

79

72

2:小王抽樣調(diào)查單位10名職工的健康指數(shù)

年齡

23

25

26

32

33

37

39

42

48

52

健康指數(shù)

93

89

90

83

79

75

80

69

68

60

3:小李抽樣調(diào)查單位10名職工的健康指數(shù)

年齡

22

29

31

36

39

40

43

46

51

55

健康指數(shù)

94

90

88

85

82

78

72

76

62

60

根據(jù)上述材料回答問題:

小張、小王和小李三人中,誰的抽樣調(diào)查的數(shù)據(jù)能夠較好地反映出該單位職工健康情況,并簡要說明其他兩位同學抽樣調(diào)查的不足之處.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD是矩形,連接AC,點E是邊CB延長線上一點,CA=CE,連接AE,F(xiàn)是線段AE的中點,

(1)如圖1,當AD=DC時,連接CFABM,求證:BM=BE;

(2)如圖2,連接BDACO,連接DF分別交AB、ACG、H,連接GC,若∠FDB=30°,S四邊形GBOH=,求線段GC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x24x1頂點為D,與x軸相交于A、B兩點,與y軸相交于點C

1)求這條拋物線的頂點D的坐標;

2)經(jīng)過點(04)且與x軸平行的直線與拋物線y=x24x1相交于M、N兩點(MN的左側(cè)),以MN為直徑作⊙P,過點D作⊙P的切線,切點為E,求點DE的長;

3)上下平移(2)中的直線MN,以MN為直徑的⊙P能否與x軸相切?如果能夠,求出⊙P的半徑;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠B90°,AC40cm,∠A60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點DE運動的時間是t秒(0t10),過點DDFBC于點F,連接DE,EF

1)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;

2)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtABCRtADE,ABCADE=90°,BCDE相交于點F,連接CD,EB.

(1)圖中還有幾對全等三角形,請你一一列舉;

(2)求證:CFEF.

查看答案和解析>>

同步練習冊答案