【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變,近年來,移動(dòng)支付已成為主要的支付方式之一,為了解某校學(xué)生上個(gè)月兩種移動(dòng)支付方式的使用情況,從全校名學(xué)生中隨機(jī)抽取了人,發(fā)現(xiàn)樣本中兩種支付方式都不使用的有人,樣本中僅使用種支付方式和僅使用種支付方式的學(xué)生的支付金額(元)的分布情況如下:
支付金額(元) 支付方式 | |||
僅使用 | 人 | 人 | 人 |
僅使用 | 人 | 人 | 人 |
下面有四個(gè)推斷:
①從樣本中使用移動(dòng)支付的學(xué)生中隨機(jī)抽取一名學(xué)生,該生使用A支付方式的概率大于他使用B支付方式的概率;
②根據(jù)樣本數(shù)據(jù)估計(jì),全校1000名學(xué)生中.同時(shí)使用A、B兩種支付方式的大約有400人;
③樣本中僅使用A種支付方式的同學(xué),上個(gè)月的支付金額的中位數(shù)一定不超過1000元;
④樣本中僅使用B種支付方式的同學(xué),上個(gè)月的支付金額的平均數(shù)一定不低于1000元.其中合理的是( )
A.①③B.②④C.①②③D.①②③④
【答案】C
【解析】
由題意根據(jù)概率公式、樣本估計(jì)總體思想的運(yùn)用、中位數(shù)和平均數(shù)的定義逐一判斷可得.
解:①從樣本中使用移動(dòng)支付的學(xué)生中隨機(jī)抽取一名學(xué)生,該生使用A支付方式的概率為
,使用B支付方式的概率為,此推斷合理;
②根據(jù)樣本數(shù)據(jù)估計(jì),全校1000名學(xué)生中,同時(shí)使用A,B兩種支付方式的大約有(人),此推斷合理;
③樣本中僅使用A種支付方式的同學(xué),第15、16個(gè)數(shù)據(jù)均落在0<a≤1000,所以上個(gè)月的支付金額的中位數(shù)一定不超過1000元,此推斷合理;
④樣本中僅使用B種支付方式的同學(xué),上個(gè)月的支付金額的平均數(shù)無法估計(jì),此推斷不正確.
故推斷正確的有①②③.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+a+2(a≠0)與x軸交于點(diǎn)A(x1,0),點(diǎn)B(x2,0),(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線的對(duì)稱軸為直線x=-1.
(1)若點(diǎn)A的坐標(biāo)為(-3,0),求拋物線的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)C是第三象限的點(diǎn),且點(diǎn)C的橫坐標(biāo)為-2,若拋物線恰好經(jīng)過點(diǎn)C,直接寫出x2的取值范圍;
(3)拋物線的對(duì)稱軸與x軸交于點(diǎn)D,點(diǎn)P在拋物線上,且∠DOP=45°,若拋物線上滿足條件的點(diǎn)P恰有4個(gè),結(jié)合圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l與⊙O相離,OA⊥l于點(diǎn)A,與⊙O相交于點(diǎn)P,OA=5.C是直線l上一點(diǎn),連接CP并延長,交⊙O于點(diǎn)B,且AB=AC.
(1)求證:AB是⊙O的切線;
(2)若tan∠ACB=,求線段BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的任意點(diǎn),如果滿足 (x≥0,a為常數(shù)),那么我們稱這樣的點(diǎn)叫做“特征點(diǎn)”.
(1)當(dāng)2≤a≤3時(shí),
①在點(diǎn)中,滿足此條件的特征點(diǎn)為__________________;
②⊙W的圓心為,半徑為1,如果⊙W上始終存在滿足條件的特征點(diǎn),請(qǐng)畫出示意圖,并直接寫出m的取值范圍;
(2)已知函數(shù),請(qǐng)利用特征點(diǎn)求出該函數(shù)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年新冠肺炎疫情發(fā)生以來,我市廣大在職黨員積極參與社區(qū)防疫工作,助力社區(qū)堅(jiān)決打贏疫情防控阻擊戰(zhàn).其中,社區(qū)有500名在職黨員,為了解本社區(qū)2月-3月期間在職黨員參加應(yīng)急執(zhí)勤的情況,社區(qū)針對(duì)執(zhí)勤的次數(shù)隨機(jī)抽取50名在職黨員進(jìn)行調(diào)查,并對(duì)數(shù)據(jù)進(jìn)行了整理、描述和分析,下面給出了部分信息.
其中,應(yīng)急執(zhí)勤次數(shù)在這一組的數(shù)據(jù)是:
20 20 21 22 23 23 23 23 25 26 26 26 27 28 28 29
請(qǐng)根據(jù)所給信息,解答下列問題:
(1)______,______;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)隨機(jī)抽取的50名在職黨員參加應(yīng)急執(zhí)勤次數(shù)的中位數(shù)是______;
(4)請(qǐng)估計(jì)2月-3月期間社區(qū)在職黨員參加應(yīng)急執(zhí)勤的次數(shù)不低于30次的約有______人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段,直線垂直平分且交于點(diǎn).以為圓心,長為半徑作弧,交直線于兩點(diǎn),分別連接.
(1)根據(jù)題意,補(bǔ)全圖形;
(2)求證:四邊形為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果的兩個(gè)端點(diǎn)分別在的兩邊上(不與點(diǎn)重合),并且除端點(diǎn)外的所有點(diǎn)都在的內(nèi)部,則稱是的“連角弧”.
(1)圖1中,是直角,是以為圓心,半徑為1的“連角弧”.
①圖中的長是______,并在圖中再作一條以為端點(diǎn)、長度相同的“連角弧”;
②以為端點(diǎn),弧長最長的“連角弧”的長度是_______.
(2)如圖2,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn)在軸正半軸上,若是半圓,也是的“連角弧”,求的取值范圍.
(3)如圖3,已知點(diǎn)分別在射線上,是的“連角弧”,且所在圓的半徑為,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)重要的著作之一,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.其中卷九中記載了一個(gè)問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”其意思是:如圖,AB為⊙O的直徑,弦CD⊥AB于點(diǎn)E,BE=1寸,CD=1尺,那么直徑AB的長為多少寸?(注:1尺=10寸)根據(jù)題意,該圓的直徑為_____寸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉辦球賽,分為若干組,其中第一組有A,B,C,D,E五個(gè)隊(duì).這五個(gè)隊(duì)要進(jìn)行單循環(huán)賽,即每兩個(gè)隊(duì)之間要進(jìn)行一場(chǎng)比賽,每場(chǎng)比賽采用三局兩勝制,即三局中勝兩局就獲勝.每場(chǎng)比賽勝負(fù)雙方根據(jù)比分會(huì)獲得相應(yīng)的積分,積分均為正整數(shù).這五個(gè)隊(duì)完成所有比賽后得到如下的積分表.
根據(jù)上表回答下列問題:
(1)第一組一共進(jìn)行了 場(chǎng)比賽,A隊(duì)的獲勝場(chǎng)數(shù)x為 ;
(2)當(dāng)B隊(duì)的總積分y=6時(shí),上表中m處應(yīng)填 ,n處應(yīng)填 ;
(3)寫出C隊(duì)總積分p的所有可能值為: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com