【題目】如圖,AB=AC,BE⊥AC于點E,CF⊥AB于點F,BE,CF交于點D,則下列結(jié)論中不正確的是( )
A. △ABE≌△ACF B. 點D在∠BAC的平分線上
C. △BDF≌△CDE D. D是BE的中點
【答案】D
【解析】
由題, BE⊥AC于E,CF⊥AB于F,∴∠AFC=∠AEB=90°,故在Rt△AEB中,∠B=90°-∠A, 在Rt△AFC中∠C=90°-∠A,∴∠B=∠C,在△ABE和△ACF中,∠A=∠A, AB = AC,∠B=∠C,∴△ABE≌△ACF(ASA),故A選項正確,∵△ABE≌△ACF,∴AE=AF,AC=AB,連接AD,在Rt△AFD和Rt△AED中, AE=AF,AD=AD,∴Rt△AFD≌Rt△AED(HL),∠DAF=∠DAE,即點D在∠BAC的平分線上,選項B正確,由AE=AF,AC=AB,得BF=CE,在△BDF和△CDE中,∠BFD=∠CED=90°,∠B=∠C, BF=CE,∴△BDF≌△CDE,選項C正確,而點D不一定是BE的中點,故選D.
試題全等三角形的判定方法有:1.邊邊邊(SSS);2.邊角邊(SAS);3.角角邊(AAS);4.角邊角(ASA);5.直角三角形中的斜邊直角邊(HL);兩三角形全等,對應(yīng)邊相等,對應(yīng)角相等,由題, BE⊥AC于E,CF⊥AB于F,∴∠AFC=∠AEB=90°,故在Rt△AEB中,∠B=90°-∠A, 在Rt△AFC中∠C=90°-∠A,∴∠B=∠C,在△ABE和△ACF中,∠A=∠A, AB = AC,∠B=∠C,∴△ABE≌△ACF(ASA),故A選項正確,∵△ABE≌△ACF,∴AE=AF,AC=AB,連接AD,在Rt△AFD和Rt△AED中, AE=AF,AD=AD,∴Rt△AFD≌Rt△AED(HL),∠DAF=∠DAE,即點D在∠BAC的平分線上,選項B正確,由AE=AF,AC=AB,得BF=CE,在△BDF和△CDE中,∠BFD=∠CED=90°,∠B=∠C, BF=CE,∴△BDF≌△CDE,選項C正確,而點D不一定是BE的中點,故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,過點D作DE⊥AB于點E,點F在邊CD上,CF=AE,連接AF,BF.
(1)求證:四邊形BFDE是矩形
(2)若CF=6,BF=8,DF=10,求證:AF是∠DAB的平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個正兩位數(shù)的個位數(shù)字是a,十位數(shù)字比個位數(shù)字大2.
(1)列式表示這個兩位數(shù);
(2)把這個兩位數(shù)的十位上的數(shù)字與個位上的數(shù)字交換位置得到一個新的兩位數(shù),試說明新數(shù)與原數(shù)的和能被22整除.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有下列四種結(jié)論:①AB=AD;②∠B=∠D;③∠BAC=∠DAC;④BC=DC.以其中的2個結(jié)論作為依據(jù)不能判定△ABC≌△ADC的是( )
A. ①② B. ①③ C. ①④ D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某容器由A、B、C三個連通長方體組成,其中A、B、C的底面積分別為25cm2、10cm2、5cm2,C的容積是整個容器容積的(容器各面的厚度忽略不計),A、B的總高度為12厘米.現(xiàn)以均勻的速度(單位:cm3/min)向容器內(nèi)注水,直到注滿為止.已知單獨注滿A、B分別需要的時間為10分鐘、8分鐘.
(1)求注滿整個容器所需的總時間;
(2)設(shè)容器A的高度為xcm,則容器B的高度為 cm;
(3)求容器A的高度和注水的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平整的地面上,有若干個完全相同的棱長為1cm的小正方體堆成一個幾何體,如圖所示:
(1)這個幾何體是由 個小正方體組成,請畫出這個幾何體的三視圖;
(2)如果在這個幾何體露在外面的表面噴上黃色的漆,每平方厘米用2克,則共需 克
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com