【題目】如圖,在△ABC中,BO、CO分別是∠ABC∠ACB的角平分線,求:

1)若∠A=50°,求∠BOC的度數(shù).

2)在其他條件不變的情況下,若∠A=n°,則∠A∠BOC之間有怎樣的數(shù)量關(guān)系?

【答案】1115°;(2∠BOC=90°+∠A

【解析】試題分析:(1)根據(jù)三角形的內(nèi)角和得到∠ABC+∠ACB=180°-∠A=130°,由于BO、CO分別是△ABC的角∠ABC∠ACB的平分線,得到∠OBC=∠ABC∠OCB=∠ACB,根據(jù)三角形的內(nèi)角和即可得到結(jié)論;

2)根據(jù)∠ABC∠ACB的平分線相交于點(diǎn)O,得到∠OBC=∠ABC,∠OCB=∠ACB,于是得到∠OBC+∠OCB=∠ABC+∠ACB),根據(jù)三角形內(nèi)角和即可得到結(jié)論.

試題解析:(1∵∠A=50°,

∴∠ABC+∠ACB=180°-∠A=130°

∵BO、CO分別是△ABC的角∠ABC、∠ACB的平分線,

∴∠OBC=∠ABC,∠OCB=∠ACB,

∴∠OBC+∠OCB=∠ABC+∠ACB=65°

∴∠BOC=180°-∠OBC+∠OCB=180°-65°=115°;

2∵∠ABC∠ACB的平分線相交于點(diǎn)O,

∴∠OBC=∠ABC∠OCB=∠ACB,

∴∠OBC+∠OCB=∠ABC+∠ACB),

△OBC中,

∠BOC=180°-∠OBC+∠OCB

=180°-∠ABC+∠ACB

=180°-180°-∠A

=90°+∠A,

∠BOC=90°+∠A

考點(diǎn):三角形內(nèi)角和定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:弦AB把圓周分成1:5的兩部分,這弦AB所對(duì)應(yīng)的圓周角的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知RtABC,ABC=90°,以直角邊AB為直徑作O,交斜邊AC于點(diǎn)D,連接BD.

(1)若AD=3,BD=4,求邊BC的長(zhǎng);

(2)取BC的中點(diǎn)E,連接ED,試證明ED與O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第二象限,以A為頂點(diǎn)的拋物線經(jīng)過(guò)原點(diǎn),與x軸負(fù)半軸交于點(diǎn)B,對(duì)稱軸為直線x=﹣1,點(diǎn)C在拋物線上,且位于點(diǎn)A、B之間(C不與A、B重合).若ABC的周長(zhǎng)為m,四邊形AOBC的周長(zhǎng)為 (用含m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,MN過(guò)點(diǎn)O且與邊AD、BC分別交于點(diǎn)M和點(diǎn)N.

(1)請(qǐng)你判斷OM與ON的數(shù)量關(guān)系,并說(shuō)明理由;

(2)過(guò)點(diǎn)D作DEAC交BC的延長(zhǎng)線于E,當(dāng)AB=5,AC=6時(shí),求BDE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年某省遭遇歷史罕見(jiàn)的夏秋東連旱,全省因?yàn)?zāi)造成直接經(jīng)濟(jì)損失68.77億元,用科學(xué)計(jì)數(shù)法表示為(

A、68.77×109 B、6.877×109 C、6.877×1010 D、6877×1010

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于任意有理數(shù)a,b,現(xiàn)用“☆”定義一種運(yùn)算:ab=a2b2,根據(jù)這個(gè)定義,代數(shù)式(x+y)☆y可以化簡(jiǎn)為( 。

A. xy+y2 B. xyy2 C. x2+2xy D. x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式:=1﹣,==

將以上三個(gè)等式兩邊分別相加得:++=1﹣++=1﹣=

1)按照一定規(guī)律排列式子:++++…,其中第n項(xiàng)(n為正整數(shù))的形式為 ,按照材料中的寫法,該項(xiàng)可表示為

2)直接寫出下式:+++…+的計(jì)算結(jié)果為

3)探究并計(jì)算:++…+(其中n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC在直角坐標(biāo)系中,

(1)請(qǐng)寫出ABC各點(diǎn)的坐標(biāo)。(2)求出SABC(3)若把ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得ABC,在圖中畫出ABC,并寫出A、B、C的坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊(cè)答案