【題目】如圖,在矩形中,,點(diǎn)分別為直線、上的動(dòng)點(diǎn),且,當(dāng)為等腰三角形時(shí),則的長(zhǎng)為______.

【答案】1或7

【解析】

當(dāng)P點(diǎn)在AB上,如圖1,先根據(jù)等角的余角相等得到∠ADP=BPQ,則可證明Rt△ADPRt△BPQ,利用相似比得到=1,則PB=AD=3,然后計(jì)算AB-PB即可.當(dāng)P點(diǎn)在AB的延長(zhǎng)線上時(shí),如圖2,同樣方法得到Rt△ADPRt△BPQ,利用相似比得到PB=AD=3,然后計(jì)算AB+PB即可.

解:當(dāng)P點(diǎn)在邊AB上,如圖1

四邊形ABCD為矩形,

∴AD=BC=3,∠A=∠B=90°,

∵PD⊥PQ,

∴∠DPQ=90°

∵∠APD+∠ADP=90°,∠APD+∠BPQ=90°,

∴∠ADP=∠BPQ,

∴Rt△ADP∽R(shí)t△BPQ

,

∴PB=AD=3,

∴AP=AB-PB=4-3=1

當(dāng)P點(diǎn)在AB的延長(zhǎng)線上時(shí),如圖2

同樣方法得到Rt△ADP∽R(shí)t△BPQ,

=1,

∴PB=AD=3,

∴AP=AB+PB=4+3=7

綜上所述,AP的長(zhǎng)度為17

故答案為17

故答案為1或7

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過點(diǎn)F的反比例函數(shù)y= (x>0)的圖象與BC邊交于點(diǎn)E.

(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;

(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車銷售公司11月份銷售某廠家的汽車,在一定范圍內(nèi),每部汽車的進(jìn)價(jià)與銷售量有如下關(guān)系:若當(dāng)月僅售出部汽車,則該部汽車的進(jìn)價(jià)為萬(wàn)元,每多售出部,所有售出的汽車的進(jìn)價(jià)均降低萬(wàn)元/.月底廠家再根據(jù)銷售量返利給銷售公司:銷售量在部以內(nèi)(),每部返利萬(wàn)元;銷售量在部以上,每部返利萬(wàn)元.

(1)若該公司當(dāng)月售出部汽車,則每部汽車的進(jìn)價(jià)為 萬(wàn)元;

(2)若汽車的售價(jià)為萬(wàn)元/部,該公司計(jì)劃當(dāng)月盈利萬(wàn)元,則需售出多少部汽車? (盈利=銷售利潤(rùn)+返利)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知雙曲線,經(jīng)過點(diǎn).

1)求的值;

2)過軸,垂足為,點(diǎn)是雙曲線的一點(diǎn),連接,,的面積為12,求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2+bx+c中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如表:

x

1

0

1

2

3

y

m

5

2

1

2

m的值是_____,當(dāng)y5時(shí),x的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一場(chǎng)籃球比賽中,一名球員在關(guān)鍵時(shí)刻投出一球,已知球出手時(shí)離地面高2米,與籃圈中心的水平距離為7米,當(dāng)球出手后水平距離為4米時(shí)到達(dá)最大高度4米,已知籃球運(yùn)行的軌跡為拋物線,籃圈中心距離地面3.19米.

1)以地面為x軸,籃球出手時(shí)垂直地面所在直線為y軸建立平面直角坐標(biāo)系,求籃球運(yùn)行的拋物線軌跡的解析式;

2)通過計(jì)算,判斷這個(gè)球員能否投中?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(9)已知:ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程的兩個(gè)實(shí)數(shù)根.

1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);

2)若AB的長(zhǎng)為2,那么ABCD的周長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知ABC三個(gè)頂點(diǎn)分別為A﹣1,2)、B2,1)、C4,5).

1)畫出ABC關(guān)于x對(duì)稱的A1B1C1

2)以原點(diǎn)O為位似中心,在x軸的上方畫出A2B2C2,使A2B2C2ABC位似,且位似比為2,并求出A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠ACB90°,AC6,BC8DBC上的任意一點(diǎn),將∠C沿過點(diǎn)D的直線折疊,使點(diǎn)C落在斜邊AB上的點(diǎn)E處,當(dāng)BDE是直角三角形時(shí),CD的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案