【題目】已知:BC∥OA,∠B=∠A=120°,試回答下列問(wèn)題:
(1)如圖1所示,求證:OB∥AC;
(2)如圖2,若點(diǎn)E、F在BC上,且滿足∠FOC=∠AOC,并且OE平分∠BOF,則∠EOC的度數(shù)是______;
(3)在(2)的條件下,若平行移動(dòng)AC,其它條件不變,如圖3,則∠OCB:∠OFB的值是______.
【答案】(1)證明見(jiàn)解析;(2)30°;(3)1:2
【解析】
(1)依據(jù)BC∥OA,即可得到∠A+∠C=180°,根據(jù)∠B=∠A,即可得到∠B+∠C=180°,進(jìn)而得出OB∥AC;
(2)依據(jù)BC∥OA,∠B=∠A=120°,即可得到∠AOB=60°,再根據(jù)∠FOC=∠AOC,且OE平分∠BOF,即可得出∠EOC=∠AOB=30°;
(3)依據(jù)BC∥OA,可得∠OCB=∠AOC,∠OFB=∠AOF,再根據(jù)∠FOC=∠AOC,即可得到∠AOC:∠AOF=1:2,即∠OCB:∠OFB=1:2.
解:(1)∵BC∥OA,
∴∠A+∠C=180°,
又∵∠B=∠A,
∴∠B+∠C=180°,
∴OB∥AC;
(2)∵BC∥OA,∠B=∠A=120°,
∴∠AOB=60°,
∵∠FOC=∠AOC,且OE平分∠BOF,
∴∠EOF=BOF,∠COF=∠AOF,
∴∠EOC=∠AOB=30°,
故答案為:30°;
(3)∵BC∥OA,
∴∠OCB=∠AOC,∠OFB=∠AOF,
∵∠FOC=∠AOC,
∴∠AOC:∠AOF=1:2,
∴∠OCB:∠OFB=1:2.
故答案為:1:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=ax2+bx+c的圖象如圖所示,其對(duì)稱(chēng)軸為直線x=-1,與x軸的一個(gè)交點(diǎn)為(1,0),與y軸的交點(diǎn)在(0,2)與(0,3)之間(不包含端點(diǎn)),有如下結(jié)論:①.2a+b=0 ②. 3a+2c<0 ③.a+5b+2c>0;④.-1<a<-,則結(jié)論正確的有_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB于E,∠CDB=15°,OE=2.
(1)求⊙O的半徑;
(2)將△OBD繞O點(diǎn)旋轉(zhuǎn),使弦BD的一個(gè)端點(diǎn)與弦AC的一個(gè)端點(diǎn)重合,則弦BD與弦AC的夾角為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知∠A=∠F,∠C=∠D,試說(shuō)明:BD∥CE.
解:∵∠A=∠F(已知)
∴AC∥DF(______)
∴∠D=∠1(______)
又∵∠C=∠D(已知)
∴∠1=______
∴BD∥CE(______)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形的一角平分線分一邊為 3cm 和 4cm 兩部分,則這個(gè)矩形的對(duì)角線的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于,的方程組,則下列結(jié)論中:①當(dāng)時(shí),方程組的解是;②當(dāng),的值互為相反數(shù)時(shí),;③不存在一個(gè)實(shí)數(shù)使得;④若,則正確的個(gè)數(shù)有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在大課間活動(dòng)中,同學(xué)們積極參加體育鍛煉,小龍?jiān)谌kS機(jī)抽取一部分同學(xué)就“我最喜愛(ài)的體育項(xiàng)目”進(jìn)行了一次抽樣調(diào)查,下面是他通過(guò)收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息,解答以下問(wèn)題:
(1)小龍共抽取______名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“其他”部分對(duì)應(yīng)的圓心角的度數(shù)是_______;
(4)若全校共2100名學(xué)生,請(qǐng)你估算“立定跳遠(yuǎn)”部分的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(圖①為實(shí)景側(cè)視圖,圖②為安裝示意圖),在屋頂?shù)男逼旅嫔习惭b太陽(yáng)能熱水器:先安裝支架AB和CD(均與水平面垂直),再將集熱板安裝在AD上.為使集熱板吸熱率更高,公司規(guī)定:AD與水平線夾角為θ1,且在水平線上的射影AF為1.4 m.現(xiàn)已測(cè)量出屋頂斜面與水平面夾角為θ2,并已知tan θ1=1.082,tan θ2=0.412.如果安裝工人已確定支架AB高為25 cm,求支架CD的高.(結(jié)果精確到1 cm)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(a,0),B(c,c),C(0,c),且滿足,P點(diǎn)從A點(diǎn)出發(fā)沿x軸正方向以每秒2個(gè)單位長(zhǎng)度的速度勻速移動(dòng),Q點(diǎn)從O點(diǎn)出發(fā)沿y軸負(fù)方向以每秒1個(gè)單位長(zhǎng)度的速度勻速移動(dòng).
(1)直接寫(xiě)出點(diǎn)B的坐標(biāo),AO和BC位置關(guān)系是;
(2)當(dāng)P、Q分別是線段AO,OC上時(shí),連接PB,QB,使,求出點(diǎn)P的坐標(biāo);
(3)在P、Q的運(yùn)動(dòng)過(guò)程中,當(dāng)∠CBQ=30°時(shí),請(qǐng)?zhí)骄俊?/span>OPQ和∠PQB的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com