【題目】如圖,在平面直角坐標系xOy中,點Aa0),Bc,c),C0c),且滿足,P點從A點出發(fā)沿x軸正方向以每秒2個單位長度的速度勻速移動,Q點從O點出發(fā)沿y軸負方向以每秒1個單位長度的速度勻速移動.

1)直接寫出點B的坐標,AOBC位置關(guān)系是;

2)當(dāng)PQ分別是線段AOOC上時,連接PBQB,使,求出點P的坐標;

3)在P、Q的運動過程中,當(dāng)∠CBQ=30°時,請?zhí)骄俊?/span>OPQ和∠PQB的數(shù)量關(guān)系,并說明理由.

【答案】(1)-4,-4 ,BCAO;(2P4,0;3)∠PQB =OPQ+30°或∠BQP+OPQ=150°

【解析】

1)由解出c,得到B點,易知BCAO;

(2)過B點作BEAOE,設(shè)時間經(jīng)過t秒,AP2tOQt,CQ4-t用t表示出,根據(jù)列出方程解出t即可;

(3)要分情況進行討論,①當(dāng)點Q在點C的上方時;過Q點作QHAO 如圖1所示,利用平行線的性質(zhì)可得到∠PQB =OPQ+30°;

②當(dāng)點Q在點C的下方時;過Q點作HJAO 如圖2所示,同樣利用平行線的性質(zhì)可得到,∠BQP+OPQ=150°

(1)得到c+4=0,得到c=-4

-4,-4 ,BCAO

(2)B點作BEAOE

設(shè)時間經(jīng)過t秒,則AP2tOQt,CQ4-t

BE4,BC4,

·

解得t=2

AP2t4

P4,0

(3) ①當(dāng)點Q在點C的上方時;過Q點作QHAO 如圖一所示,

∴∠OPQ=PQH.

又∵BCAO,QHAO

QHBC

∴∠HQB=BCQ=30°.

∴∠OPQ+BCQ=PQH+BQH.

∴即∠PQB =OPQ+CBQ.

即∠PQB =OPQ+30°

②當(dāng)點Q在點C的下方時;過Q點作HJAO 如圖二所示,

∴∠OPQ=PQJ.

又∵BCAO,QHAO

QHBC

∴∠HQB=BCQ=30°.

∴∠HQB+BQP+PQJ=180°

30°+BQP+OPQ=180°

即∠BQP+OPQ=150°

綜上所述∠PQB =OPQ+30°或∠BQP+OPQ=150°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:BCOA,∠B=A=120°,試回答下列問題:

(1)如圖1所示,求證:OBAC;

(2)如圖2,若點E、FBC上,且滿足∠FOC=AOC,并且OE平分∠BOF,則∠EOC的度數(shù)是______;

(3)(2)的條件下,若平行移動AC,其它條件不變,如圖3,則∠OCB:∠OFB的值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10, ,點E是點D關(guān)于AB的對稱點,MAB上的一動點,下列結(jié)論:①∠BOE=60°②∠CED=AOD;DMCECM+DM的最小值是10,其中正確的序號是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠BCA90°,∠A<∠ABCDAC邊上一點,且DADBOAB的中點,CE是△BCD的中線.

(1)如圖a,連接OC,請直接寫出∠OCE和∠OAC的數(shù)量關(guān)系:   ;

(2)M是射線EC上的一個動點,將射線OM繞點O逆時針旋轉(zhuǎn)得射線ON,使∠MON=∠ADB,ON與射線CA交于點N

①如圖b,猜想并證明線段OM和線段ON之間的數(shù)量關(guān)系;

②若∠BAC30°,BCm,當(dāng)∠AON15°時,請直接寫出線段ME的長度(用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】519中國首個旅游日正式啟動,某校組織了由八年級800名學(xué)生參加的旅游地理知識競賽.李老師為了了解對旅游地理知識的掌握情況從中隨機抽取了部分同學(xué)的成績作為樣本,把成績按優(yōu)秀、良好、及格、不及格4個級別進行統(tǒng)計,并繪制成了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖部分信息未給出).

請根據(jù)以上提供的信息解答下列問題

1求被抽取的部分學(xué)生的人數(shù);

2請補全條形統(tǒng)計圖并求出扇形統(tǒng)計圖中表示及格的扇形的圓心角度數(shù);

3請估計八年級的800名學(xué)生中達到良好和優(yōu)秀的總?cè)藬?shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公園的門票每張20元,一次性使用.考慮到人們的不同需求,也為了吸引更多的游客,該公園除保留原來的售票方法外,還推出了一種購買個人年票(個人年票從購買日起,可供持票者使用一年)的售票方法.年票分A,B,C三類,A類年票每張240元,持票進入該園區(qū)時,無需再購買門票;B類年票每張120元,持票者進入該園區(qū)時,需再購買門票,每次4元;C類年票每張80元,持票者進入該園區(qū)時,需再購買門票,每次6.

1)如果只能選擇一種購買年票的方式,并且計劃在一年中花費160元在該公園的門票上,通過計算,找出可進入該園區(qū)次數(shù)最多的方式.

2)一年中進入該公園超過多少次時,A類年票比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,在矩形中,.求:①矩形的面積;②對角線的長.

2)如圖,在菱形中,,,為垂足.

①求證:

②若,求的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.

(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件;

(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點G為對角線AC上一點,AG=AB.∠CAE=15°且AE=AC,連接GE.將線段AE繞點A逆時針旋轉(zhuǎn)得到線段AF,使DF=GE,則∠CAF的度數(shù)為________

查看答案和解析>>

同步練習(xí)冊答案