【題目】如圖,兩同心圓中,大圓的弦交小圓于、兩點,點到的距離等于的一半,且.則大小圓的半徑之比為( )
A. :1 B. 2: C. 10: D. 3:1
【答案】A
【解析】
過O作OE⊥AB,交AB于點E,連接OA,OC,如圖所示,由垂徑定理得到E為AB的中點,E為CD的中點,又AB的弦心距等于CD的一半,即OE=CE=ED=CD,可得出三角形COE為等腰直角三角形,設CE=OE=x,利用勾股定理表示出OC,再由AC=CD,表示出AC,由AC+CE表示出AE,在直角三角形AOE中,利用勾股定理表示出OA,即可求出兩半徑之比.
解:過O作OE⊥AB,交AB于點E,連接OA,OC,如圖所示,
由垂徑定理得到E為AB的中點,E為CD的中點,
∵AB的弦心距等于CD的一半,即OE=CE=ED=CD,
∴△OCE為等腰直角三角形,
設CE=OE=x,由勾股定理得到OC=x,
∵AC=CD=2CE,得到AC=2x,
∴AE=AC+CE=2x+x=3x,
在Rt△AEO中,根據(jù)勾股定理得:OA==x,
則這兩個同心圓的大小圓的半徑之比OA:OC=x:x=:1.
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施。經調查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件。設每件商品降價元。據(jù)此規(guī)律,請回答:
(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。
(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司生產、兩種機械設備,每臺種設備的成本是種設備的1.5倍,公司若投入16萬元生產種設備,36萬元生產種設備,則可生產兩種設備共10臺,請解答下列問題:
(1)、兩種設備每臺的成本分別是多少萬元?
(2)、兩種設備每臺的售價分別是6萬元、10萬元,且該公司生產兩種設備各30臺,現(xiàn)公司決定對兩種設備優(yōu)惠出售,種設備按原來售價8折出售,B種設備在原來售價的基礎上優(yōu)惠10%,若設備全部售出,該公司一共獲利多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸的一個交點為,另一個交點為A,且與y軸相交于C點
(1)求m的值及C點坐標;
(2)在直線BC上方的拋物線上是否存在一點M,使得它與B,C兩點構成的三角形面積最大,若存在,求出此時M點坐標;若不存在,請簡要說明理由
(3)P為拋物線上一點,它關于直線BC的對稱點為Q,當四邊形PBQC為菱形時,求點P的坐標(直接寫出答案);
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,乙車比甲車晚出發(fā)2小時(從甲車出發(fā)時開始計時),圖中折線OABC、線段DE分別表示甲、乙兩車所行路程y(千米)與時間x(小時)之間的函數(shù)關系對應的圖像線段AB表示甲出發(fā)不足2小時因故停車檢修),請根據(jù)圖像所提供的信息,解決如下問題:
(1)求乙車所行路程y與時間x的函數(shù)關系式;
(2)求兩車在途中第二次相遇時,它們距出發(fā)地的路程;
(3)乙車出發(fā)多長時間,兩車在途中第一次相遇?(寫出解題過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在長方形紙片ABCD中,點E是邊CD上的一點,將△AED沿AE所在的直線折疊,使點D落在點F處.
(1)如圖1,若點F落在對角線AC上,且∠BAC=54°,則∠DAE的度數(shù)為 °.
(2)如圖2,若點F落在邊BC上,且AB=6,AD=10,求CE的長.
(3)如圖3,若點E是CD的中點,AF的沿長線交BC于點G,且AB=6,AD=10,求CG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,長方形OABC,點A,C分別在x軸,y軸的正半軸上,點B(6,3),現(xiàn)將△OAB沿OB翻折至△OA′B位置,OA′交BC于點P.則點P的坐標為( )
A.(,3)B.(,3)C.(,3)D.()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,大拇指與小拇指盡量張開時,兩指尖的距離稱為指距.人體構造學的研究成果表明,一般情況下人的指距和身高成如下所示的關系.
(1)直接寫出身高與指距的函數(shù)關系式: .
(2)姚明的身高是226厘米,可預測他的指距約為多少?(精確到0.1厘米)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com