【題目】如圖,點A是半徑為3的⊙O上的點,
尺規(guī)作圖:作⊙O的內接正六邊形ABCDEF;
求中弧AC的長.
【答案】(1)見解析;(2)2π
【解析】試題分析:(1)由正六邊形ABCDEF的中心角為60°,可得△OAB是等邊三角形,繼而可得正六邊形的邊長等于半徑,則可畫出⊙O的內接正六邊形ABCDEF;
(2)由(1)可求得∠AOC=120°,繼而求得(1)中的長.
試題解析:(1)首先連接OA,然后以A為圓心,OA長為半徑畫弧,交⊙O于B,F,再分別以B,F為圓心,OA長為半徑畫弧,交⊙O于點E,C,在以C為圓心,OA長為半徑畫弧,交⊙O于點D,則正六邊形ABCDEF即為所求;
(2)∵正六邊形ABCDEF是⊙O的內接正六邊形
∴∠AOC=×2=120°,
∵⊙O的半徑為3,
∴的長為: =2π.
科目:初中數學 來源: 題型:
【題目】進價為每件40元的某商品,售價為每件50元時,每星期可賣出500件,市場調查反映:如果每件的售價每降價1元,每星期可多賣出100件,但售價不能低于每件42元,且每星期至少要銷售800件.設每件降價x元 (x為正整數),每星期的利潤為y元.
(1)求y與x的函數關系式并寫出自變量x的取值范圍;
(2)若某星期的利潤為5600元,此利潤是否是該星期的最大利潤?說明理由.
(3)直接寫出售價為多少時,每星期的利潤不低于5000元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在長方形ABCD中,AB=CD=8cm,AD=BC=6cm,點E是DC邊上一點,且CE=1cm,動點P從A點出發(fā),沿折線A-D-E以acm/s的速度向終點E運動,運動時間為t秒,已知a是方程的解.
(1)求a的值;
(2)點P在運動過程中,請用t的式子表示△APC的面積;
(3)在點P運動的同時,有一動點Q從C點出發(fā),沿折線C-D-A以1cm/s的速度向終點A運動,運動過程中,一個點停止運動時另一個點繼續(xù)向終點運動,當△APC和△AQC的面積相差6平方厘米時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在已知的平面直角坐標系中,△ABC的頂點都在正方形網格的格點上,若A,B兩點的坐標分別是A(-1,0),B(0,3).
(1)將△ABC繞原點O順時針旋轉90°得到△A1B1C1,畫出△A1B1C1;
(2)以點O為位似中心,與△ABC位似的△A2B2C2滿足A2B2:AB=2:1,請在網格內畫出△A2B2C2,并直接填寫△A2B2C2的面積為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,甲、乙、丙、丁、戊五名同學有以下說法:甲說:“直線BC不過點A”;乙說:“點A在直線CD外”; 丙說:“D在線段CB的反向延長線上;”丁說:“A,B,C,D兩兩連結,有5條線段” ; 戊說:“射線AD與射線CD不相交”. 其中說明正確的有( ).
A. 3人B. 4人C. 5人D. 2人
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點坐標分別為A(﹣1,1)、B(0,﹣2)、C(1,0),點P(0,2)繞點A旋轉180°得到點,點繞點B旋轉180°得到點,點繞點C旋轉180°得到點,點繞點A旋轉180°得到點,…,按此作法進行下去,則點的坐標為( )
A.(0,4)B.(﹣2,0)C.(2,﹣4)D.(﹣2,﹣2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(1,3),B(2,5),C(4,2)(每個方格的邊長均為1個單位長度)
(1)將△ABC平移,使點A移動到點A1,請畫出△A1B1C1;
(2)作出△ABC關于O點成中心對稱的△A2B2C2,并直接寫出A2,B2,C2的坐標;
(3)△A1B1C1與△A2B2C2是否成中心對稱?若是,請寫出對稱中心的坐標;若不是,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:
1637 年笛卡兒(R.Descartes,1596 1650)在其《幾何學》中,首次應用待定系數法將 4 次方程分解為兩個 2 次方程求解,并最早給出因式分解定理.
他認為,若一個高于二次的關于 x 的多項式能被 () 整除,則其一定可以分解為 () 與另外一個整式的乘積,而且令這個多項式的值為 0 時, x = a 是關于 x 的這個方程的一個根.
例如:多項式 可以分解為 () 與另外一個整式 M 的乘積,即
令時,可知 x =1 為該方程的一個根.
關于笛卡爾的“待定系數法”原理,舉例說明如下: 分解因式:
觀察知,顯然 x=1 時,原式 = 0 ,因此原式可分解為 () 與另一個整式的積.
令:,則=,因等式兩邊 x 同次冪的系數相等,則有:,得,從而
此時,不難發(fā)現 x= 1 是方程 的一個根.
根據以上材料,理解并運用材料提供的方法,解答以下問題:
(1)若 是多項式 的因式,求 a 的值并將多項式分解因式;
(2)若多項式 含有因式及 ,求a+ b 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形EFGH的頂點E,G分別在菱形ABCD的邊AD,BC上,頂點F,H在菱形ABCD的對角線BD上.
(1)求證:BG=DE;
(2)若E為AD中點,FH=2,求菱形ABCD的周長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com