如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作▱ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;(2)若BD=CD,求證:四邊形ADCE是矩形.
解答: 證明:(1)∵四邊形ABDE是平行四邊形(已知),
∴AB∥DE,AB=DE(平行四邊形的對(duì)邊平行且相等);
∴∠B=∠EDC(兩直線平行,同位角相等);
又∵AB=AC(已知),
∴AC=DE(等量代換),∠B=∠ACB(等邊對(duì)等角),
∴∠EDC=∠ACD(等量代換);
∵在△ADC和△ECD中,
,
∴△ADC≌△ECD(SAS);
(2)∵四邊形ABDE是平行四邊形(已知),
∴BD∥AE,BD=AE(平行四邊形的對(duì)邊平行且相等),
∴AE∥CD;
又∵BD=CD,
∴AE=CD(等量代換),
∴四邊形ADCE是平行四邊形(對(duì)邊平行且相等的四邊形是平行四邊形);
在△ABC中,AB=AC,BD=CD,
∴AD⊥BC(等腰三角形的“三合一”性質(zhì)),
∴∠ADC=90°,
∴▱ADCE是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖278,正方形OABC與正方形ODEF是位似圖形,O為位似中心,相似比為1∶,則這兩個(gè)四邊形每組對(duì)應(yīng)頂點(diǎn)到位似中心的距離之比是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
有兩張相同的矩形紙片,邊長(zhǎng)分別為2和8,若將兩張紙片交叉重疊,則得到重疊部分面積最小是 _________ ,最大的是 _________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知關(guān)于x的方程x2﹣(m+2)x+(2m﹣1)=0.
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB∥CD,BO:OC=1:4,點(diǎn)E、F分別是OC,OD的中點(diǎn),則EF:AB的值為( )
A、1 B、2 C、3 D、4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:正方形中,,繞點(diǎn)順時(shí)針旋轉(zhuǎn),它的兩邊分別交(或它們的延長(zhǎng)線)于點(diǎn).當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖1),易證.
(1)當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖2),線段和之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.
(2)當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖3的位置時(shí),線段和之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分線分別交AB、BC于D、E,則 △ACD的周長(zhǎng)為 cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com