【題目】在如圖所示的平面直角坐標系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關于點B1成中心對稱,再作△B2A3B3與△B2A2B1關于點B2成中心對稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標是_____.
【答案】(4n+1,)
【解析】
試題首先根據(jù)△OA1B1是邊長為2的等邊三角形,可得A1的坐標為(1,),B1的坐標為(2,0);然后根據(jù)中心對稱的性質,分別求出點A2、A3、A4的坐標各是多少;最后總結出An的坐標的規(guī)律,求出A2n+1的坐標是多少即可.
解:∵△OA1B1是邊長為2的等邊三角形,
∴A1的坐標為(1,),B1的坐標為(2,0),
∵△B2A2B1與△OA1B1關于點B1成中心對稱,
∴點A2與點A1關于點B1成中心對稱,
∵2×2﹣1=3,2×0﹣=﹣,
∴點A2的坐標是(3,﹣),
∵△B2A3B3與△B2A2B1關于點B2成中心對稱,
∴點A3與點A2關于點B2成中心對稱,
∵2×4﹣3=5,2×0﹣(﹣)=,
∴點A3的坐標是(5,),
∵△B3A4B4與△B3A3B2關于點B3成中心對稱,
∴點A4與點A3關于點B3成中心對稱,
∵2×6﹣5=7,2×0﹣=﹣,
∴點A4的坐標是(7,﹣),
…,
∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,
∴An的橫坐標是2n﹣1,A2n+1的橫坐標是2(2n+1)﹣1=4n+1,
∵當n為奇數(shù)時,An的縱坐標是,當n為偶數(shù)時,An的縱坐標是﹣,
∴頂點A2n+1的縱坐標是,
∴△B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標是(4n+1,).
故答案為:(4n+1,).
科目:初中數(shù)學 來源: 題型:
【題目】小明在操場上做游戲,他發(fā)現(xiàn)地上有一個不規(guī)則的封閉圖形ABC.為了知道它的面積,他在封閉圖形內劃出了一個半徑為1米的圓,在不遠處向圖形內擲石子,且記錄如下:
擲石子次數(shù)石子落在的區(qū)域ABC | 50次 | 150次 | 300次 |
石子落在圓內(含圓上)的次數(shù)m | 14 | 43 | 93 |
石子落在陰影內的次數(shù)n | 19 | 85 | 186 |
(1)隨著次數(shù)的增多,小明發(fā)現(xiàn)m與n的比值在一個常數(shù)k附近波動,請你寫出k的值.
(2)請利用學過的知識求出封閉圖形ABC的大致面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是 ;
(2)以點B為位似中心,在網(wǎng)格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1;
(3)四邊形AA2C2C的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bc+c的圖象如圖所示,則下列判斷中錯誤的是( 。
A. 圖象的對稱軸是直線x=﹣1 B. 當x>﹣1時,y隨x的增大而減小
C. 當﹣3<x<1時,y<0 D. 一元二次方程ax2+bx+c=0的兩個根是﹣3,1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線與x軸交于A,B兩點(點B在點A的右側),且A,B兩點的坐標分別為(-2,0),(8,0),與y軸交于點C(0,-4),連接BC,以BC為一邊,點O為對稱中心作菱形BDEC,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P作x軸的垂線L交拋物線于點Q,交BD于點M.
(1)求拋物線的解析式;
(2)當點P在線段OB上運動時,試探究m為何值時,四邊形CQMD是平行四邊形?
(3)位于第四象限內的拋物線上是否存在點N,使得△BCN的面積最大?若存在,求出N點的坐標,及△BCN面積的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=,下列結論:① △APD≌△AEB;② EB⊥ED;③ 點B到直線AE的距離為; ④,其中正確結論的序號是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在平面直角坐標系中,雙曲線與直線都經(jīng)過點.
(1)求與的值;
(2)此雙曲線又經(jīng)過點,點是軸的負半軸上的一點,且點到軸的距離是2 ,聯(lián)結、、,
①求的面積;
②點在軸上,為等腰三角形,請直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)(是常數(shù))
(1)求證:不論為何值,該函數(shù)圖象與軸一定有兩個公共點。
(2)若該函數(shù)圖象經(jīng)過點(0,-2),則該函數(shù)圖象怎樣平移經(jīng)過原點?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com