【題目】小明在操場上做游戲,他發(fā)現(xiàn)地上有一個(gè)不規(guī)則的封閉圖形ABC.為了知道它的面積,他在封閉圖形內(nèi)劃出了一個(gè)半徑為1米的圓,在不遠(yuǎn)處向圖形內(nèi)擲石子,且記錄如下:

擲石子次數(shù)石子落在的區(qū)域ABC

50

150

300

石子落在圓內(nèi)(含圓上)的次數(shù)m

14

43

93

石子落在陰影內(nèi)的次數(shù)n

19

85

186

(1)隨著次數(shù)的增多,小明發(fā)現(xiàn)mn的比值在一個(gè)常數(shù)k附近波動,請你寫出k的值.

(2)請利用學(xué)過的知識求出封閉圖形ABC的大致面積.

【答案】(1);(2)3π.

【解析】

(1)根據(jù)次數(shù)越多,頻率越穩(wěn)定,用300次時(shí)石子落在圓內(nèi)(含圓上)的次數(shù) 石子落在陰影內(nèi)的次數(shù)即可得答案.(2)根據(jù)石子落在圓內(nèi)和石子落在陰影內(nèi)的次數(shù)的關(guān)系求出圓的面積約占封閉圖形ABC面積的比例即可求出封閉圖形ABC的大致面積.

1)根據(jù)統(tǒng)計(jì)表,可得石子落在圓內(nèi)的概率與落在陰影部分的概率之比k==;

(2)石子落在圓內(nèi)和石子落在陰影內(nèi)的次數(shù)關(guān)系,隨著試驗(yàn)次數(shù)的增多,逐漸趨向于為1:2,

所以圓的面積約占封閉圖形ABC面積的

因?yàn)?/span>S=π,

所以封閉圖形ABC的面積約為3π.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場老板對一種新上市商品的銷售情況進(jìn)行記錄,已知這種商品進(jìn)價(jià)為每件40元,經(jīng)過記錄分析發(fā)現(xiàn),當(dāng)銷售單價(jià)在40元至90元之間(含40元和90元)時(shí),每月的銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似地看作一次函數(shù),其圖象如圖所示.

(1)求y與x的函數(shù)關(guān)系式.

(2)設(shè)商場老板每月獲得的利潤為P(元),求P與x之間的函數(shù)關(guān)系式;

(3)如果想要每月獲得2400元的利潤,那么銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtAOB中,兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,將AOB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到AOB.若反比例函數(shù)的圖象恰好經(jīng)過斜邊AB的中點(diǎn)C,SABO=4,tanBAO=2,則k的值為

A.3 B.4 C.6 D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ACB90°,ACBC,ADCE,BECE,垂足分別為D,E,若ADaDEb,

1)如圖1,求BE的長,寫出求解過程;(用含ab的式子表示)

2)如圖2,點(diǎn)DABC內(nèi)部時(shí),直接寫出BE的長___.(用含a,b的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,邊長為1的正方形網(wǎng)格中,的三個(gè)頂點(diǎn)、、都在格點(diǎn)上.

1)作關(guān)于關(guān)于軸的對稱圖形,(其中、、的對稱點(diǎn)分別是、),并寫出點(diǎn)坐標(biāo);

2軸上一點(diǎn),請?jiān)趫D中畫出使的周長最小時(shí)的點(diǎn)(不寫畫法,保留畫圖痕跡),并直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,分別以,為邊作等邊三角形和等邊三角形,連接,交于點(diǎn),則的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程x2﹣4x+k=0有兩個(gè)不相等的實(shí)數(shù)根

(1)求k的取值范圍;

(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0x2+mx﹣1=0有一個(gè)相同的根,求此時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC≌△ADE,且∠CAD10°,∠B∠D25°,∠EAB120°,試求∠DFB∠DGB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,OA1B1是邊長為2的等邊三角形,作B2A2B1OA1B1關(guān)于點(diǎn)B1成中心對稱,再作B2A3B3B2A2B1關(guān)于點(diǎn)B2成中心對稱,如此作下去,則B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是_____

查看答案和解析>>

同步練習(xí)冊答案