【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角頂點(diǎn)C為旋轉(zhuǎn)中心,將△ABC旋轉(zhuǎn)到△A′B′C的位置,其中A′、B′分別是A、B的對應(yīng)點(diǎn),且點(diǎn)B在斜邊A′B′上,直角邊CA′交AB于D,則旋轉(zhuǎn)角等于(
A.70°
B.80°
C.60°
D.50°

【答案】B
【解析】解:∵∠ACB=90°,∠A=40°, ∴∠ABC=50°,
又△ABC≌△AB′C′,
∴∠B′=∠ABC=50°,CB=CB′,
∴∠BCB′=80°,
故選:B.
【考點(diǎn)精析】本題主要考查了旋轉(zhuǎn)的性質(zhì)的相關(guān)知識點(diǎn),需要掌握①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=6cmAC=12cm , 動點(diǎn)M從點(diǎn)A出發(fā),以1cm∕秒的速度向點(diǎn)B運(yùn)動,動點(diǎn)N從點(diǎn)C出發(fā),以2cm∕秒的速度向點(diǎn)A運(yùn)動,若兩點(diǎn)同時運(yùn)動,是否存在某一時刻t , 使得以點(diǎn)A、M、N為頂點(diǎn)的三角形與△ABC相似,若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,已知A(8,0),AOP為等腰三角形且面積為16,滿足條件的P點(diǎn)有( 。

A. 4 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB與CE交于F,ED與AB,BC,分別交于M,H.
(1)求證:CF=CH;
(2)△ABC不動,將△EDC繞點(diǎn)C旋轉(zhuǎn)到∠BCE=45°,證明:四邊形ACDM是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A﹣2,2),B﹣3,﹣2

1)若點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)O對稱,則點(diǎn)C的坐標(biāo)為   ;

2)將點(diǎn)A向右平移5個單位得到點(diǎn)D,則點(diǎn)D的坐標(biāo)為   ;

3)由點(diǎn)AB,C,D組成的四邊形ABCD內(nèi)(不包括邊界)任取一個橫、縱坐標(biāo)均為整數(shù)的點(diǎn),求所取的點(diǎn)橫、縱坐標(biāo)之和恰好為零的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,△ADF按順時針方向旋轉(zhuǎn)一定角度后得到△ABE,若AF=4.AB=7.
(1)旋轉(zhuǎn)中心為;旋轉(zhuǎn)角度為;
(2)求DE的長度;
(3)指出BE與DF的關(guān)系如何?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有兩個不相等的實(shí)數(shù)根,則k的取值范圍是(
A.k> 且k≠2
B.k≥ 且k≠2
C.k> 且k≠2
D.k≥ 且k≠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a,b為實(shí)數(shù),且b= ,
(1)求 的值;
(2)若 的值是關(guān)于x的一元二次方程x2﹣2x+k2+k=0的一個根;求k及另一個根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,對角線AC,BD相交于點(diǎn)O,AC=12cm,BD=16cm,動點(diǎn)N從點(diǎn)D出發(fā),沿線段DB以2cm/s的速度向點(diǎn)B運(yùn)動,同時動點(diǎn)M從點(diǎn)B出發(fā),沿線段BA以1cm/s的速度向點(diǎn)A運(yùn)動,當(dāng)其中一個動點(diǎn)停止運(yùn)動時另一個動點(diǎn)也隨之停止,設(shè)運(yùn)動時間為t(s)(t>0),以點(diǎn)M為圓心,MB長為半徑的⊙M與射線BA,線段BD分別交于點(diǎn)E,F(xiàn),連接EN.
(1)求BF的長(用含有t的代數(shù)式表示),并求出t的取值范圍;
(2)當(dāng)t為何值時,線段EN與⊙M相切?
(3)若⊙M與線段EN只有一個公共點(diǎn),求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案