如圖,?ABCD的頂點(diǎn)A、B的坐標(biāo)分別是A(-1,0),B(0,-2),頂點(diǎn)C、D在雙曲線y=
k
x
上,邊AD交y軸于點(diǎn)E,且四邊形BCDE的面積是△ABE面積的5倍,則k=______.
如圖,過C、D兩點(diǎn)作x軸的垂線,垂足為F、G,DG交BC于M點(diǎn),過C點(diǎn)作CH⊥DG,垂足為H,
∵ABCD是平行四邊形,
∴∠ABC=∠ADC,
∵BODG,
∴∠OBC=∠GDE,
∴∠HDC=∠ABO,
∴△CDH≌△ABO(AAS),
∴CH=AO=1,DH=OB=2,設(shè)C(m+1,n),D(m,n+2),
則(m+1)n=m(n+2)=k,
解得n=2m,則D的坐標(biāo)是(m,2m+2),
設(shè)直線AD解析式為y=ax+b,將A、D兩點(diǎn)坐標(biāo)代入得
-a+b=0①
ma+b=2m+2②
,
由①得:a=b,代入②得:mb+b=2m+2,
即b(m+1)=2(m+1),解得b=2,
a=2
b=2
,
∴y=2x+2,E(0,2),BE=4,
∴S△ABE=
1
2
×BE×AO=2,
∵S四邊形BCDE=5S△ABE=5×
1
2
×4×1=10,
∵S四邊形BCDE=S△ABE+S四邊形BEDM=10,
即2+4×m=10,
解得m=2,
∴n=2m=4,
∴k=(m+1)n=3×4=12.
故答案為:12.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,P1(x1,y1)、P2(x2,y2),…P10(x10,y10)在函數(shù)y=
16
x
(x>0)的圖象上,△OP1A1,△P2A1A2,△P3A2A3…△P10A9A10都是等腰直角三角形,斜邊OA1,A1A2…A9A10,都在x軸上,則y1+y2+…+y10=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點(diǎn)P在雙曲線y=
k
x
(k≠0)上,點(diǎn)P′(1,2)與點(diǎn)P關(guān)于y軸對(duì)稱,則此雙曲線的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)M(-2,-1),且點(diǎn)P(-1,-2)為雙曲線上的一點(diǎn),過P作PA垂直x軸于點(diǎn)A:
(1)寫出正比例函數(shù)和反比例函數(shù)的關(guān)系式;
(2)若點(diǎn)Q為直線MO上一動(dòng)點(diǎn)(不與點(diǎn)M、O重合),過點(diǎn)Q作QB⊥y軸于點(diǎn)B,是否存在點(diǎn)Q,使△OBQ與△OAP面積相等?如果存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說明理由;
(3)在(2)的條件下,在平面內(nèi)找一點(diǎn)C,使以O(shè)、P、C、Q為頂點(diǎn)的四邊形為平行四邊形,請(qǐng)直接寫出C點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),正比例函數(shù)y=kx的圖象與雙曲y=-
2
x
交于點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為-
2

(1)求k的值.
(2)將直線y=kx向上平移4個(gè)單位得到直線BC,直線BC分別交x軸、y軸于點(diǎn)B、C,如點(diǎn)D在直線BC上,在平面直角坐標(biāo)系中求一點(diǎn)P,使以O(shè)、B、D、P為頂點(diǎn)的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一次函數(shù)y=-2x+b的圖象與反比例函數(shù)y=
k
x
的圖象交于點(diǎn)A(1,6)、B(3,2)兩點(diǎn).
(1)求b的值;
(2)求反比例函數(shù)的解析式;
(3)根據(jù)圖象填空,當(dāng)反比例函數(shù)小于一次函數(shù)的值時(shí),x的取值范圍是______;
(4)作AD⊥y軸,BC⊥x軸,垂足分別是D、C,五邊形ABCOD的面積是14,求△ABO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

當(dāng)x>0時(shí),函數(shù)y=-
2
x
的圖象在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=-2x-2與雙曲線y=
k
x
在第二象限內(nèi)的交點(diǎn)為A,與兩坐標(biāo)軸分別交于B、C兩點(diǎn),AD⊥x軸于點(diǎn)D,如果△ADB與△COB全等,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點(diǎn)M是反比例函數(shù)y=
1
x
在第一象限內(nèi)圖象上的點(diǎn),作MB⊥x軸于B.過點(diǎn)M的第一條直線交y軸于點(diǎn)A1,交反比例函數(shù)圖象于點(diǎn)C1,且A1C1=
1
2
A1M,△A1C1B的面積記為S1;過點(diǎn)M的第二條直線交y軸于點(diǎn)A2,交反比例函數(shù)圖象于點(diǎn)C2,且A2C2=
1
4
A2M,△A2C2B的面積記為S2;過點(diǎn)M的第三條直線交y軸于點(diǎn)A3,交反比例函數(shù)圖象于點(diǎn)C3,且A3C3=
1
8
A3M,△A3C3B的面積記為S3;以此類推…;則S1+S2+S3+…+S8=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案