請選擇一組你自己所喜歡的的值,使二次函數(shù)的圖象同時(shí)足下列條件:①開口向下,②當(dāng)x<-2時(shí),隨的增大而增大;當(dāng)x>-2時(shí),隨的增大而減。@樣的二次函數(shù)的解析式可以是 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一幢大樓的頂部豎有一塊寫有“校訓(xùn)”的宣傳牌CD.小明在山坡的底部A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB垂直于視線AD,AB=20米,AE=30米,則這塊宣傳牌CD的高度為_ _.(測角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù):≈1.414,≈1.732).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連結(jié)PQ。以下五個(gè)結(jié)論:
① AD=BE;② PQ∥AE;③ AP=BQ;④ DE=DP; ⑤ ∠AOB=60°成立的結(jié)論個(gè)數(shù)是( )
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中E是BC上的一點(diǎn),EC=2EB,點(diǎn)D是AC的中點(diǎn),AE、BD交于點(diǎn)F,AF=3FE,若△ABC的面積為18,給出下列命題:①△ABE的面積為6;②△ABF的面積和四邊形DFEC的面積相等;③點(diǎn)F是BD的中點(diǎn);④四邊形DFEC的面積為.其中,正確的結(jié)論有 .(把你認(rèn)為正確的結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A,B兩點(diǎn),
(1)試確定上述反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)求△AOB的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
D.
【解析】如圖所示,連接CM,
∵M(jìn)是AB的中點(diǎn),∴S△ACM=S△BCM=S△ABC,開始時(shí),S△MPQ=S△ACM=S△ABC,點(diǎn)P到達(dá)AC的中點(diǎn)時(shí),點(diǎn)Q到達(dá)BC的中點(diǎn)時(shí),S△MPQ=S△ABC,結(jié)束時(shí),S△MPQ=S△BCM=S△ABC,
所以,△MPQ的面積大小變化情況是:先減小后增大.
故選D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,對角線AC、BD相交于點(diǎn)G,E為AD的中點(diǎn),連結(jié)BE交AC于F,連結(jié)FD,若∠BFA=90°,則下列四對三角形:①△BEA與△ACD②△FED與△DEB③△CFD與△ABG④△ADF與△CFB中相似的為( )
A.①④ B.①② C.②③④ D.①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com