先化簡,后求值:(
1
x-1
-
1
x+1
)÷
x+2
x2-1
,其中x=
2
-2.
考點:分式的化簡求值
專題:
分析:先根據(jù)分式混合運算的法則把原式進行化簡,再把x的值代入進行計算即可.
解答:解:原式=(
x+1
x2-1
-
x-1
x2-1
)•
x2-1
x+2

=
x+1-x+1
x2-1
x2-1
x+2

=
2
x+2

當x=
2
-2時,原式=
2
2
-2+2
=
2
2
=
2
點評:本題考查的是分式的化簡求值,熟知分式混合運算的法則是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

等腰△ABC中,AB=AC,邊AB繞點A逆時針旋轉(zhuǎn)角度m得到線段AD.

(1)如圖1,若∠BAC=30°,30°<m<180°,連接BD,請用含m的式子表示∠DBC的度數(shù);
(2)如圖2,若∠BAC=60°,0°<m<360°,連接BD,DC,直接寫出△BDC為等腰三角形時m所有可能的取值
 
;
(3)如圖3,若∠BAC=90°,射線AD與直線BC相交于點E,是否存在旋轉(zhuǎn)角度m,使
AE
BE
=
2
?若存在,求出所有符合條件的m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算|3-
3
|+tan60°-(-1)2014-(
2
-1)0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某中學五班的學生對本校學生會倡導的“抗震救災,眾志成城”自愿捐款活動進行抽樣調(diào)查,得到了一組學生捐款情況的數(shù)據(jù).下圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計圖,圖中從左到右各長方形的高度之比為3:4:5:8:6,又知此次調(diào)查中捐款25元和30元的學生一共42人.
(1)他們一共調(diào)查了多少人?
(2)這組數(shù)據(jù)的眾數(shù)、中位數(shù)各是多少?
(3)從該班任選一人,捐款數(shù)不低于25元的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點,∠BAC=∠AGF=90°,它們的斜邊長為2,若△ABC固定不動,△AFG繞點A旋轉(zhuǎn),AF、AG與邊BC的交點分別為D、E(點D不與點B重合,點E不與點C重合).設BE=m,CD=n.
(1)求證:△ABE∽△DCA;
(2)求m與n的函數(shù)關系式,直接寫出自變量n的取值范圍;
(3)以△ABC的斜邊BC所在的直線為x軸,BC邊上的高所在的直線為y軸,建立平面直角坐標系(如圖2).在邊BC上找一點D,使BD=CE,求出D點的坐標,并通過計算驗證BD+CE=DE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

數(shù)據(jù) 0,1,1,3,3,4 的中位數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

不等式組
2x-1≥0
3-x>0
的解集是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,AC=BC=5,AB=6,D為CB延長線上一點,BD=2.8,則tanD=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

圓錐的側(cè)面積為15πcm2,底面半徑為3cm,則圓錐的母線長為( 。
A、4B、6C、5D、7

查看答案和解析>>

同步練習冊答案