【題目】為扶持大學生自主創(chuàng)業(yè),市政府提供了80萬元的無息貸款,用于某大學生開辦公司,生產并銷售自主研發(fā)的一種電子產品,并約定用該公司經營的利潤逐步償還無息貸款.已知該電子產品的生產成本為每件40元,公司每月要支付其他費用15萬元.該產品每月的銷售量y(萬件)與銷售單價x(元)滿足如圖所示的一次函數關系:
(1)求每月銷售量y(萬件)與銷售單價x(元)之間的函數關系式.
(2)當銷售單價定為多少元時,該公司每月銷售利潤最大.
(3)若相關部門要求該電子產品的銷售單價不得低于其生產成本,且銷售每件產品的利潤率不能超過25%,則該公司最早用幾個月可以還清無息貸款?
【答案】(1) y=-x+8;(2) 60元;(3)6.
【解析】
(1)根據題目中所給的圖象,確定一次函數圖象經過點(60,2)和(70,1),再利用待定系數法求每月銷售量y(萬件)與銷售單價x(元)之間的函數關系式即可;(2)設當銷售單價定為x元時,該公司每月銷售利潤為W萬元,根據“總利潤=單件的利潤×銷售量”列出W與x的二次函數關系式,再利用二次函數的性質求解即可;(3)根據題意求得x的取值范圍,再求得在這一取值范圍內w的最大值,再計算解答即可.
解:(1)設每月銷售量y與x的函數解析式為y=kx+b(k≠0),把(60,2)和(70,1)代入得解得故y=-x+8.
(2)設當銷售單價定為x元時,該公司每月銷售利潤為W萬元,則W=(x-40)-15=-x2+12x-335=-(x-60)2+25,則當銷售單價定為60元時,該公司每月銷售利潤最大.
(3)由題意得解得40≤x≤50,
∵W=-(x-60)2+25,∴拋物線開口向下,當x<60時,W隨x的值增大而增大,∴當x=50時,每月有最大利潤為W=-×(50-60)2+25=15(萬元),80÷15==5,∴該公司最早用6個月可以還清無息貸款.
科目:初中數學 來源: 題型:
【題目】如圖,為了檢驗教室里的矩形門框是否合格,某班的四個學習小組用三角板和細繩分別測得如下結果,其中不能判定門框是否合格的是( )
A. AB=CD,AD=BC,AC=BD B. AC=BD,∠B=∠C=90° C. AB=CD,∠B=∠C=90° D. AB=CD,AC=BD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明想利用太陽光測量樓高,他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對面墻上有這棟樓的影子,針對這種情況,他設計了一種測量方案,具體測量情況如下:如示意圖,小明邊移動邊觀察,發(fā)現(xiàn)站到點E處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時,測得小明落在墻上的影子高度CD=1.2m,CE=0.8m,CA=30m(點A、E、C在同一直線上).已知小明的身高EF是1.7m,請你幫小明求出樓高AB(結果精確到0.1m).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】菱形AOBC如圖放置,A(3,4),先將菱形向左平移9個單位長度,再向下平移1個單位長度,然后沿軸翻折,最后繞坐標原點O旋轉90°得到點C的對應點為點P,則點P的坐標為 ( )
A. (-3,-1) B. (3,1) C. (3,1)(-3,-1) D. (-3,1)(3,-1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊△ABC中,AH⊥BC,垂足為H,且AH=6 cm,點D是AB的中點,點P是AH上一動點,則DP與BP和的最小值是__________cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E是BC的中點,AB⊥BC,DC⊥BC,AE平分∠BAD,下列結論:①∠AED=90°②∠ADE=∠CDE③DE=BE④AD=AB+CD,四個結論中成立的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD為△ABC外接圓的直徑,AD⊥BC,垂足為點F,∠ABC的平分線交AD于點E,連接BD,CD.
(1)求證:BD=CD;
(2)請判斷B,E,C三點是否在以D為圓心,以DB為半徑的圓上?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com