【題目】如圖,在四邊形ABCD中,ADBC,∠BCD90°,將四邊形ABCD沿AB方向平移得到四邊形A'B'C'D'BCC'D'相交于點E,若BC8,CE3,C'E2,則陰影部分的面積為( 。

A.12+2B.13C.2+6D.26

【答案】B

【解析】

利用平移的性質(zhì)得到BC′=BC8,BCBC′,CDCD′,S梯形ABCDS梯形ABCD,然后根據(jù)S陰影部分S梯形BBCE進行計算.

解:∵四邊形ABCD沿AB方向平移得到四邊形A'B'C'D',

BC′=BC8,BCBC′,CDCD′,S梯形ABCDS梯形ABCD,

CD′⊥BE,

S陰影部分S梯形BBCE83+8)×213

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊邊靠墻(墻長18m)的空地,修建一個矩形綠地ABCD,綠地一邊靠墻,另三邊用總長為40m的柵欄圍。ㄈ鐖D),設(shè)AB邊為xm,綠地面積為ym2

(1)求yx之間的函數(shù)關(guān)系,并求出自變量x的取值范圍;

(2)綠地的面積能不能為200m2?如果能,求出x的值,如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位舉行“健康人生”徒步走活動,某人從起點體育村沿建設(shè)路到市生態(tài)園,再沿原路返回,設(shè)此人離開起點的路程s(千米)與徒步時間t(小時)之間的函數(shù)關(guān)系如圖所示,其中從起點到市生態(tài)園的平均速度是4千米/小時,用2小時,根據(jù)圖象提供信息,解答下列問題.

1)求圖中的a值.

2)若在距離起點5千米處有一個地點C,此人從第一次經(jīng)過點C到第二次經(jīng)過點C,所用時間為1.75小時.

①求AB所在直線的函數(shù)解析式;

②請你直接回答,此人走完全程所用的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測量某建筑物BC的高度,小明先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進了10m到達D處,此時遇到一斜坡,坡度i=1:,沿著斜坡前進10米到達E處測得建筑物頂部的仰角是45°,請求出該建筑物BC的高度為( 。ńY(jié)果可帶根號)

A. 5+5 B. 5+5 C. 5+10 D. 5+10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3,對角線AC、BD相交于點O,將AC向兩個方向延長,分別至點E和點F,且AECF3,則四邊形BEDF的周長為( )

A. 20B. 24C. 12D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,點P在BA的延長線上,弦CD交AB于E,連接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,過E作弦GF⊥BC交圓與G、F兩點,連接CF、BG.則下列結(jié)論:①CD⊥AB;②PC是⊙O的切線;③OD∥GF;④弦CF的弦心距等于BG.則其中正確的是( 。

A. ①②④ B. ③④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A36°,∠C72°,∠ABC的平分線交ACD,則圖中共有等腰三角形(  )

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,3).延長CBx軸于點A1,作正方形A1B1C1C;延長C1B1x軸于點A2,作正方形A2B2C2C1,…,按這樣的規(guī)律進行下去,第2017個正方形的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+的圖象與反比例函數(shù)y=(k>0)的圖象交于A,B兩點,過A點作x軸的垂線,垂足為M,AOM面積為1.

(1)求反比例函數(shù)的解析式;

(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標.

查看答案和解析>>

同步練習(xí)冊答案