【題目】已知a<0,則點P(﹣a2 , ﹣a+1)關于原點的對稱點P′在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
科目:初中數(shù)學 來源: 題型:
【題目】把分別標有數(shù)字2,3,4,5的四個小球放入A袋,把分別標有數(shù)字 , , 的三個小球放入B袋,所有小球的形狀、大小、質(zhì)地均相同,A、B兩個袋子不透明.
(1)如果從A袋中摸出的小球上的數(shù)字為3,再從B袋中摸出一個小球,兩個小球上的數(shù)字互為倒數(shù)的概率是;
(2)小明分別從A,B兩個袋子中各摸出一個小球,請用樹狀圖或列表法列出所有可能出現(xiàn)的結(jié)果,并求這兩個小球上的數(shù)字互為倒數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四川蘆山發(fā)生7.0級地震后,一周之內(nèi),通過鐵路部門已運送救災物資15810噸.將15810用科學記數(shù)法表示為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】著名的瑞士數(shù)學家歐拉曾指出:可以表示為四個整數(shù)平方之和的甲、乙兩數(shù)相乘,其乘積仍然可以表示為四個整數(shù)平方之和,即 ,這就是著名的歐拉恒等式,有人稱這樣的數(shù)為“不變心的數(shù)”.實際上,上述結(jié)論可概括為:可以表示為兩個整數(shù)平方之和的甲、乙兩數(shù)相乘,其乘積仍然可以表示為兩個整數(shù)平方之和.
【閱讀思考】
在數(shù)學思想中,有種解題技巧稱之為“無中生有”.例如問題:將代數(shù)式 改成兩個平方之差的形式.解:原式 ﹒
(1)【動手一試】試將 改成兩個整數(shù)平方之和的形式. (12+52)(22+72)=;
(2)【解決問題】請你靈活運用利用上述思想來解決“不變心的數(shù)”問題:將代數(shù)式 改成兩個整數(shù)平方之和的形式(其中a、b、c、d均為整數(shù)),并給出詳細的推導過程﹒
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用科學記數(shù)法表示0.000034,結(jié)果是( )
A.3.4×10﹣5
B.3.4×10﹣4
C.0.34×10﹣4
D.34×10﹣6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知m<n,有下列關于m、n的命題:①6m>6n;②-3m<-3n;③m-5<n-5;④2m+5>2n+5.其中,所有正確命題的序號是___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中正確的是( 。
A. 平行四邊形的對角線相等
B. 對頂角相等
C. 兩條腰對應相等的兩個等腰三角形全等
D. 同旁內(nèi)角相等,兩直線平行
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知斜坡AB長為80米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.
(1)若修建的斜坡BE的坡角為45°,求平臺DE的長;(結(jié)果保留根號)
(2)一座建筑物GH距離A處36米遠(即AG為36米),小明在D處測得建筑物頂部H的仰角(即∠HDM)為30°.點B、C、A、G、H在同一個平面內(nèi),點C、A、G在同一條直線上,且HG⊥CG,求建筑物GH的高度.(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com