【題目】 已知關(guān)于x,y的方程組的解是正數(shù)

(1)求a的取值范圍

(2)化簡:|4a+5|-|a-4|

【答案】(1)-1<a<5.

2)當-1<a≤4時,原式=5a+1;當4<a<5時,原式=3a+9.

【解析】

1)先把a看做已知,解方程組可得x、y關(guān)于a的代數(shù)式,再由方程組的解為正數(shù)可得關(guān)于a的不等式組,解之即得答案;

2)根據(jù)(1)題的a的范圍可判斷絕對值里面的代數(shù)式的符號,再化簡即可.

解:(1,①+②得,2x=8a+8,所以x=4a+4,

②-①得,2y=2a+10,所以y=a+5

所以方程組的解是.

因為原方程組的解是正數(shù),所以,解得;

2)當-1<a≤4時,4a+5>0,a40,所以

4<a<5時,4a+5>0,a4>0,所以.

所以當-1<a≤4時,原式=5a+1;當4<a<5時,原式=3a+9.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】a是一個長為2 m、寬為2 n的長方形, 沿圖中虛線用剪刀均分成四塊小長方形, 然后按圖b的形狀拼成一個正方形。

(1)你認為圖b中的陰影部分的正方形的邊長等于__________________。

(2)請用兩種不同的方法求圖b中陰影部分的面積。

方法1___________________________ 方法2___________________________

(3)觀察圖b,你能寫出下列三個代數(shù)式之間的等量關(guān)系嗎?

代數(shù)式: m+n2 ,(m-n2,mn

_______________________________________________________

(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:

a+b=7,ab=5,求(a-b2的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于實數(shù),定義兩種新運算“※”和“”: (其中為常數(shù),且,若對于平面直角坐標系中的點,有點的坐標,與之對應,則稱點的“衍生點”為點.例如:的“2衍生點”為,即

1)點的“3衍生點”的坐標為  ;

2)若點的“5衍生點” 的坐標為,求點的坐標;

3)若點的“衍生點”為點,且直線平行于軸,線段的長度為線段長度的3倍,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:

①4acb2

方程 的兩個根是x1=1,x2=3;

③3a+c0

y0時,x的取值范圍是﹣1≤x3

x0時,yx增大而增大

其中結(jié)論正確的個數(shù)是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在10×10的正方形網(wǎng)格中(每個小正方形的邊長都為1個單位),△ABC的三個頂點都在格點上.建立如圖所示的直角坐標系,

請在圖中標出△ABC的外接圓的圓心P的位置,并填寫: 圓心P的坐標:P ,

2)將△ABC繞點A逆時針旋轉(zhuǎn)90°得到△ADE,畫出圖

形,并求△ABC掃過的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖△ABC中,ABAC,∠BAC58°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EFEBC上,FAC上)折疊,使C與點O恰好重合,則∠OEB_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4cm,∠BAD=60°.動點E、F分別從點B、D同時出發(fā),以1cm/s的速度向點A、C運動,連接AF、CE,取AF、CE的中點G、H,連接GE、FH.設(shè)運動的時間為ts(0<t<4).

(1)求證:AF∥CE;

(2)當t為何值時,四邊形EHFG為菱形;

(3)試探究:是否存在某個時刻t,使四邊形EHFG為矩形,若存在,求出t的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(10分)已知ABC和ADE是等腰直角三角形,ACB=ADE=90°,點F為BE中點,連結(jié)DF、CF.

(1)如圖1, 當點D在AB上,點E在AC上,請直接寫出此時線段DF、CF的數(shù)量關(guān)系位置關(guān)系(不證明);

(2)如圖2,在(1)的條件下ADE繞點A順時針旋轉(zhuǎn)45°時,請你判斷此時(1)中的結(jié)論是否仍然成立,并證明你的判斷

(3)如圖3,在(1)的條件下ADE繞點A順時針旋轉(zhuǎn)90°時,若AD=1,AC=,求此時線段CF的長(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】古代阿拉伯數(shù)學家泰比特·伊本·奎拉對勾股定理進行了推廣研究如圖(圖1為銳角,2為直角3為鈍角)

ABC的邊BC上取, 兩點使,, , 進而可得 ;(用表示

AB=4,AC=3,BC=6,

查看答案和解析>>

同步練習冊答案