【題目】如圖,在△ABC中,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長(zhǎng)線上,且AC=CF,∠CBF=∠CFB.
(1)求證:直線BF是⊙O的切線;
(2)若點(diǎn)D,點(diǎn)E分別是弧AB的三等分點(diǎn),當(dāng)AD=5時(shí),求BF的長(zhǎng);
(3)在(2)的條件下,如果以點(diǎn)C為圓心,r為半徑的圓上總存在不同的兩點(diǎn)到點(diǎn)O的距離為5,求r的取值范圍.
【答案】
(1)證明:如圖,∵∠CBF=∠CFB,
∴CB=CF.
又∵AC=CF,
∴CB= AF,
∴△ABF是直角三角形,
∴∠ABF=90°,即AB⊥BF.
又∵AB是直徑,
∴直線BF是⊙O的切線
(2)解:如圖,連接DO,EO,
∵點(diǎn)D,點(diǎn)E分別是弧AB的三等分點(diǎn),
∴∠AOD=60°.
又∵OA=OD,
∴△AOD是等邊三角形,
∴OA=AD=OD=5,∠OAD=60°,
∴AB=10.
∴在Rt△ABF中,∠ABF=90°,BF=ABtan60°=10 ,即BF=10
(3)如圖,連接OC.則OC是Rt△ABF的中位線,
∵由(2)知,BF=10 ,
∴圓心距OC= ,
∵⊙O半徑OA=5.
∴ <r< .
【解析】(1)欲證明直線BF是⊙O的切線,只需證明AB⊥BF;(2)根據(jù)圓心角、弧、弦間的關(guān)系,等邊三角形的判定證得△AOD是等邊三角形,所以在Rt△ABF中,∠ABF=90°,∠OAD=60°,AB=10,則利用∠A的正切三角函數(shù)的定義來(lái)求BF邊的長(zhǎng)度;(3)根據(jù)已知條件知⊙O與⊙C相交.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小山崗的斜坡AC的坡角α=45°,在與山腳C距離200米的D處,測(cè)得山頂A的仰角為26.6°,小山崗的高AB約為(結(jié)果取整數(shù),參考數(shù)據(jù):sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50)( )
A.164m
B.178m
C.200m
D.1618m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把邊長(zhǎng)為3的正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到正方形AB′C′D′,邊BC與D′C′交于點(diǎn)O,則四邊形ABOD′的周長(zhǎng)是( )
A. 6B. 6C. 3D. 3+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一矩形紙片OABC放在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=10,OC=8,如圖在OC邊上取一點(diǎn)D,將△BCD沿BD折疊,使點(diǎn)C恰好落在OA邊上,記作E點(diǎn);
(1)求點(diǎn)E的坐標(biāo)及折痕DB的長(zhǎng);
(2)在x軸上取兩點(diǎn)M、N(點(diǎn)M在點(diǎn)N的左側(cè)),且MN=4.5,求使四邊形BDMN的周長(zhǎng)最短的點(diǎn)M、點(diǎn)N的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲廠有某種原料198噸,每天用去12噸,乙廠有同樣的原料121噸,每天運(yùn)進(jìn)7噸,問(wèn)多少天后甲廠原料是乙廠原料的,設(shè)x天后甲廠原料是乙廠原料的,則下列正確的方程是( )
A. 198-12x=(121-7x) B. (198-12x)= 121-7x
C. (198-12x)= 121+7x D. 198-12x= (121+7x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校學(xué)生對(duì)A《最強(qiáng)大腦》、B《朗讀者》、C《中國(guó)詩(shī)詞大會(huì)》、D《出彩中國(guó)人》四個(gè)電視節(jié)目的喜愛(ài)情況,隨機(jī)抽取了m學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì)(要求每名學(xué)生選出并且只能選出一個(gè)自己最喜愛(ài)的節(jié)目),將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖(如圖1和圖2):
根據(jù)統(tǒng)計(jì)圖提供的信息,回答下列問(wèn)題;
(1)m= ,n= ;
(2)扇形統(tǒng)計(jì)圖中,喜愛(ài)《最強(qiáng)大腦》節(jié)目所對(duì)應(yīng)的扇形的圓心角度數(shù)是 度.
(3)根據(jù)以上信息直接在答題卡中補(bǔ)全條形統(tǒng)計(jì)圖;
(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該校6000名學(xué)生中有多少學(xué)生最喜歡《中國(guó)詩(shī)詞大會(huì)》節(jié)目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解方程﹣1的步驟如下:
(解析)第一步:﹣1(分?jǐn)?shù)的基本性質(zhì))
第二步:2x﹣1=3(2x+8)﹣3……(①)
第三步:2x﹣1=6x+24﹣3……(②)
第四步:2x﹣6x=24﹣3+1……(③)
第五步:﹣4x=22(④)
第六步:x=﹣……(⑤)
以上解方程第二步到第六步的計(jì)算依據(jù)有:①去括號(hào)法則.②等式性質(zhì)一.③等式性質(zhì)二.④合并同類(lèi)項(xiàng)法則.請(qǐng)選擇排序完全正確的一個(gè)選項(xiàng)( 。
A. ②①③④② B. ②①③④③ C. ③①②④③ D. ③①④②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知A(-1,5),B(4,2),C(-1,0)三點(diǎn).
(1)點(diǎn)A的對(duì)稱點(diǎn)A′的坐標(biāo)為(1,-5),點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)B′的坐標(biāo)為________,點(diǎn)C關(guān)于y軸的對(duì)稱點(diǎn)C′的坐標(biāo)為________;
(2)求(1)中的△A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某船在A、B兩地之間航行,順?biāo)叫行枰?/span>4小時(shí),逆水行需要5小時(shí),水流速度為2千米/時(shí).
(1)求船在靜水中的速度.
(2)若船從A地順?biāo)叫械?/span>B地,然后逆流返回,到達(dá)距離A地26千米的C地,一共航行了多少小時(shí)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com