精英家教網 > 初中數學 > 題目詳情

【題目】解方程﹣1的步驟如下:

(解析)第一步:﹣1(分數的基本性質)

第二步:2x﹣1=3(2x+8)﹣3……(①)

第三步:2x﹣1=6x+24﹣3……(②)

第四步:2x﹣6x=24﹣3+1……(③)

第五步:﹣4x=22(④)

第六步:x=﹣……(⑤)

以上解方程第二步到第六步的計算依據有:去括號法則.等式性質一.③等式性質二.合并同類項法則.請選擇排序完全正確的一個選項(  )

A. ②①③④② B. ②①③④③ C. ③①②④③ D. ③①④②③

【答案】C

【解析】

利用等式的性質及去括號、合并同類項法則判斷即可

第一步1(分數的基本性質)

第二步2x1=32x+8)﹣3……(等式性質二)

第三步2x1=6x+243……(去括號法則)

第四步2x6x=243+1……(等式性質一)

第五步:﹣4x=22(合并同類項法則)

第六步x=﹣……(等式性質二)

故選C

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作⊙O的切線DF,交AC于點F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知m1=m2=﹣x+3.

(1)m1m2互為相反數,x的值

(2)m1m22,x的值

(3)m2m11,x的值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且AC=CF,∠CBF=∠CFB.
(1)求證:直線BF是⊙O的切線;
(2)若點D,點E分別是弧AB的三等分點,當AD=5時,求BF的長;
(3)在(2)的條件下,如果以點C為圓心,r為半徑的圓上總存在不同的兩點到點O的距離為5,求r的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明在“課外新世界”中遇到這樣一道題:如圖1,已知∠AOB=30°與線段a,你能作出邊長為a的等邊三角形△COD嗎?小明的做法是:如圖2,以O為圓心,線段a為半徑畫弧,分別交OA,OB于點M,N,在弧MN上任取一點P,以點M為圓心,MP為半徑畫弧,交弧CD于點C,同理以點N為圓心,N P為半徑畫弧,交弧CD于點D,連結CD,即△COD就是所求的等邊三角形.
(1)請寫出小明這種做法的理由;
(2)在此基礎上請你作如下操作和探究(如圖3):連結MN,MN是否平行于CD?為什么?
(3)點P在什么位置時,MN∥CD?請用小明的作圖方法在圖1中作出圖形(不寫作法,保留作圖痕跡).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在數學活動課上,老師出示兩張等腰三角形紙片,如圖所示.圖1的三角形邊長分別為4,4,2;圖2的三角形的腰長也為4,底角等于圖1中三角形的頂角;某學習小組將這兩張紙片在同一平面內拼成如圖3的四邊形OABC,連結AC.該學習小組經探究得到以下四個結論,其中錯誤的是(
A.∠OCB=2∠ACB
B.∠OAB+∠OAC=90°
C.AC=2
D.BC=4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】新華書店舉行購書優(yōu)惠活動

①一次性購書不超過100元,不享受打折優(yōu)惠

②一次性購書超過100元但不超過200元一律打九折;

③一次性購書200元以上一律打七折

小麗在這次活動中,兩次購書總共付款240.87元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是_____元.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=x2+(k﹣1)x﹣k與直線y=kx+1交于A,B兩點,點A在點B的左側.

(1)如圖1,當k=1時,直接寫出A,B兩點的坐標;
(2)在(1)的條件下,點P為拋物線上的一個動點,且在直線AB下方,試求出△ABP面積的最大值及此時點P的坐標;
(3)如圖2,拋物線y=x2+(k﹣1)x﹣k(k>0)與x軸交于點C、D兩點(點C在點D的左側),在直線y=kx+1上是否存在唯一一點Q,使得∠OQC=90°?若存在,請求出此時k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知a、b、c滿足|a﹣|++(c﹣42=0.

(1)求a、b、c的值;

(2)判斷以a、b、c為邊能否構成三角形?若能構成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案