【題目】四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖①,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖②,若∠ABC的角平分線交DC于點(diǎn)E,且BE∥AD,試求出∠C的度數(shù);
(3)如圖③,若∠ABC和∠BCD的角平分線交于點(diǎn)E,試求出∠BEC的度數(shù).
【答案】(1)70°;(2)60°;(3)110°
【解析】
(1)根據(jù)四邊形的內(nèi)角和是360°,結(jié)合已知條件就可求解;
(2)根據(jù)平行線的性質(zhì)得到∠ABE的度數(shù),再根據(jù)角平分線的定義得到∠ABC的度數(shù),進(jìn)一步根據(jù)四邊形的內(nèi)角和定理進(jìn)行求解;
(3)根據(jù)四邊形的內(nèi)角和定理以及角平分線的概念求得∠EBC+∠ECB的度數(shù),再進(jìn)一步求得∠BEC的度數(shù).
(1)在四邊形ABCD中,
∵∠A+∠B+∠C+∠D=360°, 又∠A=140°,∠D=80°,∠B=∠C,
∴140°+∠C+∠C+80°=360°,即∠C=70°.
(2)∵BE∥AD,∠A=140°,∠D=80°,
∴∠BEC=∠D,∠A+∠ABE=180°.
∴∠BEC=80°,∠ABE=40°.
∵BE是∠ABC的平分線,
∴∠EBC=∠ABE=40°.
∴∠C=180°-∠EBC-∠BEC=180°-40°-80°=60°.
(3)在四邊形ABCD中, 有∠A+∠ABC+∠BCD+∠D=360°, ∠A=140°,∠D=80°,
所以∠ABC+∠BCD=140°,從而有∠ABC+∠BCD=70°.
因?yàn)?/span>∠ABC和∠BCD的角平分線交于點(diǎn)E,所以有∠EBC=∠ABC,∠ECB=∠BCD.
故∠C=180°-(∠EBC +∠ECB)=180°-(∠ABC+∠BCD)=180°-70°=110°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一個(gè)長(zhǎng)方體的三視圖(單位:cm),根據(jù)圖中數(shù)據(jù)計(jì)算這個(gè)長(zhǎng)方體的體積是_______cm3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】旅游公司在景區(qū)內(nèi)配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營(yíng)運(yùn)規(guī)律如下:當(dāng)x不超過(guò)100元時(shí),觀光車能全部租出;當(dāng)x超過(guò)100元時(shí),每輛車的日租金每增加5元,租出去的觀光車就會(huì)減少1輛.已知所有觀光車每天的管理費(fèi)是1100元.
(1)優(yōu)惠活動(dòng)期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應(yīng)為多少元?(注:凈收入=租車收入﹣管理費(fèi))
(2)當(dāng)每輛車的日租金為多少元時(shí),每天的凈收入最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P從(0,3)出發(fā),沿所示的方向運(yùn)動(dòng),每當(dāng)碰到矩形的邊時(shí)反彈,反彈時(shí)反射角等于入射角,當(dāng)點(diǎn)p第2019次碰到矩形的邊時(shí)點(diǎn)P的坐標(biāo)為( 。
A. ( 1,4 )B. ( 5,0 )C. ( 8,3 )D. ( 6,4 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1);
(2);
(3)2x3y(-2xy)+(-2x2y)2;
(4)(2a+b)(b-2a)-(a-3b)2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】□ABCD中,E、F是對(duì)角線BD上不同的兩點(diǎn),下列條件中,不能得出四邊形AECF一定為平行四邊形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,直線AB∥DC,點(diǎn)P為平面上一點(diǎn),連接AP與CP.
(1)如圖1,點(diǎn)P在直線AB、CD之間,當(dāng)∠BAP=60°,∠DCP=20°時(shí),求∠APC.
(2)如圖2,點(diǎn)P在直線AB、CD之間,∠BAP與∠DCP的角平分線相交于點(diǎn)K,寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)如圖3,點(diǎn)P落在CD外,∠BAP與∠DCP的角平分線相交于點(diǎn)K,∠AKC與∠APC有何數(shù)量關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一塊直角三角板ABC(∠A=30°)的斜邊AB與一個(gè)以r為半徑的圓輪子相靠,若BD=1,則r等于( )
A. 2 B. C. 1.5 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA、PB是⊙O的切線,CD切⊙O于點(diǎn)E,△PCD的周長(zhǎng)為12,∠APB=60°.
求:(1)PA的長(zhǎng);
(2)∠COD的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com