【題目】如圖,在平面直角坐標系中,O為坐標原點,A(a,0),B(0,b),且a,b滿足,連接AB,AB=5.C(-7,0)是x軸負半軸上一點,連接BC.
(1)求OA、OB的長;
(2)動點P從點B出發(fā),沿BA以每秒2個單位的速度向終點A勻速運動,連接CP,設點P的運動時間為t,△CBP的面積為S,用含t的代數(shù)式表示S(不要求寫出t的取值范圍)
(3)在(2)的條件下,連接OP,是否存在t值,使S△BCP=S△PCO,如果存在,求出相應的t值,并直接寫出P點坐標.若不存在,說明理由.
【答案】(1)OA=3,OB=4;(2)S=8t;(3)t=1.5,P(1.8,2.4).
【解析】
(1) 用加減消元法解求出a,b的大小,即可得出OA、OB的長;
(2)用等面積法求出三角形CBA中以AB邊為高的高h,再由面積公式即可求解;
(3)設在t時刻,存在S△BCP=S△PCO,解得t,即可得出答案.
(1)
由得b=4,則a=3,
得到OA=3,OB=4;
(2)根據(jù)勾股定理可得AB==5,因為C(-7,0),且OA=3,所以CA=10,又因為OB=4,所以,有等面積法可得三角形CBA中以AB邊為高的高h,,則h=8,則△CBP的面積=;
(3)設在t時刻存在S△BCP=S△PCO,
設三角形OAP中以OP邊為高為q,由等面積公式可得q=,則S△OAP=
則S△PCO=S△BAC-S△BCP-S△OAP,即S△BCP=(S△BAC-S△BCP-S△OAP),解得t=1.5,即由三角函數(shù)可得P(1.8,2.4).
科目:初中數(shù)學 來源: 題型:
【題目】(本小題10分)如圖,已知A(-4,2)、B(n,-4)是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個交點.
(1)求此反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若函數(shù)是關于的反比例函數(shù)。
(1)求的值;
(2)函數(shù)圖象在哪些象限?在每個象限內(nèi),隨的增大而怎樣變化?
(3)當時,求的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,
(1)求證:四邊形ADCE為矩形;
(2)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某一公路的道路維修工程,準備從甲、乙兩個工程隊選一個隊單獨完成.根據(jù)兩隊每天的工程費用和每天完成的工程量可知,若由兩隊合做此項維修工程,6天可以完成,共需工程費用385200元,若單獨完成此項維修工程,甲隊比乙隊少用5天,每天的工程費用甲隊比乙隊多4000元,(1)若甲單獨完成需要多少天?(2)從節(jié)省資金的角度考慮,應該選擇哪個工程隊?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點G是正方形ABCD對角線CA的延長線上任意一點,以線段AG為邊作一個正方形AEFG,線段EB和GD相交于點H.
(1)求證:EB=GD且EB⊥GD;
(2)若AB=2,AG=,求的長;
(3)如圖2,正方形AEFG繞點A逆時針旋轉(zhuǎn)連結DE,BG,與的面積之差是否會發(fā)生變化?若不變,請求出與的面積之差;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,一個智能機器人接到如下指令:從原點O出發(fā),按向右,向上,向右,向下的方向依次不斷移動,每次移動1m.其行走路線如圖所示,第1次移動到A1,第2次移動到A2,…第n次移動到An.則△OA6A2020的面積是( )
A.505B.504.5C.505.5D.1010
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】霧霾天氣持續(xù)籠罩我國大部分地區(qū),困擾著廣大市民的生活,口罩市場出現(xiàn)熱銷,小明的爸爸用12000元購進甲、乙兩種型號的口罩在自家商店銷售,銷售完后共獲利2700元,進價和售價如表:
(1)小明爸爸的商店購進甲、乙兩種型號口罩各多少袋?
(2)該商店第二次以原價購進甲、乙兩種型號口罩,購進甲種型號口罩袋數(shù)不變,而購進乙種型號口罩袋數(shù)是第一次的2倍,甲種口罩按原售價出售,而效果更好的乙種口罩打折讓利銷售,若兩種型號的口罩全部售完,要使第二次銷售活動獲利不少于2460元,每袋乙種型號的口罩最多打幾折?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的外角∠CBD和∠BCE的平分線相交于點F,則下列結論正確的是( 。
A. 點F在BC邊的垂直平分線上 B. 點F在∠BAC的平分線上
C. △BCF是等腰三角形 D. △BCF是直角三角形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com