【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2﹣2mx+1圖象與y軸的交點(diǎn)為A,將點(diǎn)A向右平移4個(gè)單位長度得到點(diǎn)B.
(1)直接寫出點(diǎn)A與點(diǎn)B的坐標(biāo);
(2)求出拋物線的對稱軸(用含m的式子表示);
(3)若函數(shù)y=x2﹣2mx+1的圖象與線段AB恰有一個(gè)公共點(diǎn),求m的取值范圍.
【答案】(1)A(0,1),B(4,1);(2)x=m;(3)m≤0或m>2.
【解析】
(1)計(jì)算自變量為0的函數(shù)值得到A點(diǎn)坐標(biāo),然后利用點(diǎn)平移的規(guī)律確定B點(diǎn)坐標(biāo);
(2)利用拋物線的對稱軸方程求解;
(3)當(dāng)對稱軸為y軸時(shí),滿足條件,此時(shí)m=0;當(dāng)m<0時(shí)滿足條件;若m>0時(shí),利用當(dāng)x=4,y<1時(shí)拋物線與線段AB恰有一個(gè)公共點(diǎn),然后求出此時(shí)m的范圍.
解:(1)當(dāng)x=0時(shí),y=x2﹣2mx+1=1,則A點(diǎn)坐標(biāo)為(0,1),
把A(0,1)右平移4個(gè)單位長度得到點(diǎn)B,則B點(diǎn)坐標(biāo)為(4,1),
(2)拋物線的對稱軸為直線x=-=m;
(3)當(dāng)m=0時(shí),拋物線解析式為y=x2+1,此拋物線與線段AB恰有一個(gè)公共點(diǎn);
當(dāng)m<0時(shí),拋物線與線段AB恰有一個(gè)公共點(diǎn);
當(dāng)m>0時(shí),當(dāng)x=4,y<1,即16﹣8m+1<1,解得m>2,
所以m的范圍為m≤0或m>2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB,如果將線段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AC,則稱點(diǎn)C為線段AB關(guān)于點(diǎn)A的逆轉(zhuǎn)點(diǎn).點(diǎn)C為線段AB關(guān)于點(diǎn)A的逆轉(zhuǎn)點(diǎn)的示意圖如圖1:
(1)如圖2,在正方形ABCD中,點(diǎn)_____為線段BC關(guān)于點(diǎn)B的逆轉(zhuǎn)點(diǎn);
(2)如圖3,在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x,0),且x>0,點(diǎn)E是y軸上一點(diǎn),點(diǎn)F是線段EO關(guān)于點(diǎn)E的逆轉(zhuǎn)點(diǎn),點(diǎn)G是線段EP關(guān)于點(diǎn)E的逆轉(zhuǎn)點(diǎn),過逆轉(zhuǎn)點(diǎn)G,F的直線與x軸交于點(diǎn)H.
①補(bǔ)全圖;
②判斷過逆轉(zhuǎn)點(diǎn)G,F的直線與x軸的位置關(guān)系并證明;
③若點(diǎn)E的坐標(biāo)為(0,5),連接PF、PG,設(shè)△PFG的面積為y,直接寫出y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線與軸交于點(diǎn),與軸交于點(diǎn),以為直徑作,點(diǎn)為線段上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合),作于,連結(jié)并延長交于點(diǎn).
(1)求點(diǎn)的坐標(biāo)和的值;
(2)設(shè).
①當(dāng)時(shí),求的值及點(diǎn)的坐標(biāo);
②求關(guān)于的函數(shù)表達(dá)式.
(3)如圖2,連接,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是直徑AB上的一點(diǎn),AB=6,CP⊥AB交半圓于點(diǎn)C,以BC為直角邊構(gòu)造等腰Rt△BCD,∠BCD=90°,連接OD.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對線段AP,BC,OD的長度之間的關(guān)系進(jìn)行了探究.
下面是小明的探究過程,請補(bǔ)充完整:
(1)對于點(diǎn)P在AB上的不同位置,畫圖、測量,得到了線段AP,BC,OD的長度的幾組值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置… | |
AP | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | … |
BC | 6.00 | 5.48 | 4.90 | 4.24 | 3.46 | 2.45 | … |
OD | 6.71 | 7.24 | 7.07 | 6.71 | 6.16 | 5.33 | … |
在AP,BC,OD的長度這三個(gè)量中,確定________的長度是自變量,________的長度和________的長度都是這個(gè)自變量的函數(shù);
(2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)OD=2BC時(shí),線段AP的長度約為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC,BD相交于點(diǎn)O,過B點(diǎn)作BF∥AC,過C點(diǎn)作CF∥BD,BF與CF相交于點(diǎn)F.
(1)求證:四邊形BFCO是菱形;
(2)連接OF、DF,若AB=2,tan∠OFD=,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的弦,AC=6,點(diǎn)B是⊙O上的一個(gè)動(dòng)點(diǎn),且∠ABC=60°,若點(diǎn)M、N分別是AC、BC的中點(diǎn),則MN的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在弧MN和弦MN所組成的圖形中,P是弦MN上一動(dòng)點(diǎn),過點(diǎn)P作弦MN的垂線,交弧MN于點(diǎn)Q,連接MQ.已知MN=6cm,設(shè)M、P兩點(diǎn)間的距離為xcm,P、Q兩點(diǎn)間的距離為y1cm,M、Q兩點(diǎn)間的距離為y2cm.小軒根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小軒的探究過程,請補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了y1,y2與x的幾組對應(yīng)值:x/cm.
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 2.24 | 2.83 | 3.00 | 2.83 | 2.24 | 0 |
y2/cm | 0 | 2.45 | 3.46 | 4.24 | m | 5.48 | 6 |
上表中m的值為 .(保留兩位小數(shù))
(2)在同一平面直角坐標(biāo)系xOy(圖2)中,函數(shù)y1的圖象如圖,請你描出補(bǔ)全后的表中y2各組數(shù)值所對應(yīng)的點(diǎn)(x,y2),并畫出函數(shù)y2的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)△MPQ有一個(gè)角是30°時(shí),MP的長度約為 cm.(保留兩位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地扶貧人員甲從辦公室出發(fā),騎車勻速前往所村走訪群眾,出發(fā)幾分鐘后,扶貧人員乙發(fā)現(xiàn)甲的手機(jī)落在辦公室,無法聯(lián)系,于是騎車沿相同的路線勻速去追甲.乙剛出發(fā)2分鐘,甲也發(fā)現(xiàn)自己手機(jī)落在辦公室,立刻原路原速騎車返回辦公室,2分鐘后甲遇到乙,乙把手機(jī)給甲后立即原路原速返回辦公室,甲繼續(xù)原路原速趕往村.甲、乙兩人相距的路程(米)與甲出發(fā)的時(shí)間(分)之間的關(guān)系如圖所示(乙給甲手機(jī)的時(shí)間忽略不計(jì)).有下列三個(gè)說法:
①甲出發(fā)10分鐘后與乙相遇;
②甲的速度是400米/分;
③乙返回辦公室用時(shí)4分鐘.
其中所有正確說法的序號(hào)是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O外,∠ABC的平分線與⊙O交于點(diǎn)D,∠C=90°.
(1)CD與⊙O有怎樣的位置關(guān)系?請說明理由;
(2)若∠CDB=60°,AB=6,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com