【題目】如圖,在RtABC中,∠ACB90°,CD是斜邊AB上的中線,以CD為直徑的⊙O分別交AC、BC于點M、N,過點NNEAB,垂足為E

1)若⊙O的半徑為,AC6,求BN的長;

2)求證:NE與⊙O相切.

【答案】14;(2)見解析

【解析】

1)由直角三角形斜邊上的中點到三頂點距離相等,得BDCD,又由直徑所對的圓周角是直角得DNBC,由三線合一知BNNC,即可求得答案;

2)證明切線,一般先把圓心和切點連接,然后證明垂直,由(1)知,通過角的轉(zhuǎn)化,即可證明ONNE,從而證得結(jié)論.

1)連接DN,ON

∵⊙O的半徑為,

CD5

∵∠ACB90°CD是斜邊AB上的中線,

BDCDAD5,

AB10,

CD為直徑

∴∠CND90°,即DNBC,且BDCD

BNNC4

2)∵∠ACB90°,D為斜邊的中點,

,

∴∠BCD=∠B,

OCON,

∴∠BCD=∠ONC,

∴∠ONC=∠B,

ONAB,

NEAB,

ONNE,

NE為⊙O的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,是內(nèi)心,邊上一點,以點為圓心,為半徑的經(jīng)過點,交于點.

1)求證:的切線;

2)連接,若,求圓心的距離及的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系xOy中的點PC,給出如下定義:連接PCC于點N,若點P關(guān)于點N的對稱點QC的內(nèi)部,則稱點PC的外稱點.

1)當(dāng)O的半徑為1時,

在點D(﹣1,﹣1),E2,0),F04)中,O的外稱點是   ;

若點Mm,n)為O的外稱點,且線段MOO于點G,求m的取值范圍;

2)直線y=﹣x+b過點A1,1),與x軸交于點BT的圓心為Tt,0),半徑為1.若線段AB上的所有點都是T的外稱點,請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A的平分線交BCDEAB上一點,DE=DC,以D為圓心,以DB的長為半徑畫圓.

求證:(1AC⊙D的切線;(2AB+EB=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+5的圖象與坐標(biāo)軸交于A,B兩點,與反比例函數(shù)y的圖象交于MN兩點,過點MMCy軸于點C,且CM1,過點NNDx軸于點D,且DN1.已知點Px軸(除原點O外)上一點.

1)直接寫出M、N的坐標(biāo)及k的值;

2)將線段CP繞點P按順時針或逆時針旋轉(zhuǎn)90°得到線段PQ,當(dāng)點P滑動時,點Q能否在反比例函數(shù)的圖象上?如果能,求出所有的點Q的坐標(biāo);如果不能,請說明理由;

3)當(dāng)點P滑動時,是否存在反比例函數(shù)圖象(第一象限的一支)上的點S,使得以P、S、M、N四個點為頂點的四邊形是平行四邊形?若存在,請直接寫出符合題意的點S的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:二元一次不等式是指含有兩個未知數(shù)(即二元),并且未知數(shù)的次數(shù)是1次(即一次)的不等式;滿足二元一次不等式(組)的xy的取值構(gòu)成有序數(shù)對(x,y),所有這樣的有序數(shù)對(x,y)構(gòu)成的集合稱為二元一次不等式(組)的解集.如:x+y3是二元一次不等式,(1,4)是該不等式的解.有序?qū)崝?shù)對可以看成直角坐標(biāo)平面內(nèi)點的坐標(biāo).于是二元一次不等式(組)的解集就可以看成直角坐標(biāo)系內(nèi)的點構(gòu)成的集合.

1)已知A,1),B 1,﹣1),C 2,﹣1),D(﹣1,﹣1)四個點,請在直角坐標(biāo)系中標(biāo)出這四個點,這四個點中是xy2≤0的解的點是   

2)設(shè)的解集在坐標(biāo)系內(nèi)所對應(yīng)的點形成的圖形為G

①求G的面積;

Px,y)為G內(nèi)(含邊界)的一點,求3x+2y的取值范圍;

3)設(shè)的解集圍成的圖形為M,直接寫出拋物線yx2+2mx+3m2m1與圖形M有交點時m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)圖象的頂點為,其圖象與軸的交點、的橫坐標(biāo)分別為,.與軸負半軸交于點,在下面五個結(jié)論中:

;②;③;④只有當(dāng)時,是等腰直角三角形;使為等腰三角形的值可以有四個.

其中正確的結(jié)論有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標(biāo)為(﹣10),其部分圖象如圖所示,下列結(jié)論:

①4acb2;

方程 的兩個根是x1=1,x2=3;

③3a+c0

當(dāng)y0時,x的取值范圍是﹣1≤x3

當(dāng)x0時,yx增大而增大

其中結(jié)論正確的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線中,函數(shù)值y與自變量之間的部分對應(yīng)關(guān)系如下表:

0

1

y

0

1)求該拋物線的表達式;

2)如果將該拋物線平移,使它的頂點移到點M2,4)的位置,那么其平移的方法是____________.

查看答案和解析>>

同步練習(xí)冊答案