【題目】二次函數(shù))的大致圖象如圖所示,頂點坐標為,點是該拋物線上一點,若點是拋物線上任意一點,有下列結論:

②若,則

③若,則;

④若方程有兩個實數(shù)根,且,則

其中正確結論的個數(shù)是(

A.1B.2C.3D.4

【答案】B

【解析】

由拋物線對稱軸為:直線x=1,得x=-2x=4所對應的函數(shù)值相等,即可判斷①;由由拋物線的對稱性即可判斷②;由拋物線的頂點坐標為,結合函數(shù)的圖象,直接可判斷③;由方程有兩個實數(shù)根,且,得拋物線與直線的交點的橫坐標為,進而即可判斷④.

∵拋物線頂點坐標為

∴拋物線對稱軸為:直線x=1,

x=-2x=4所對應的函數(shù)值相等,即:,

∴①正確;

由拋物線的對稱性可知:若,則,

∴②錯誤;

∵拋物線的頂點坐標為

時,

∴③錯誤;

∵方程有兩個實數(shù)根,且,

∴拋物線與直線的交點的橫坐標為

∵拋物線開口向上,與x軸的交點橫坐標分別為:-1,3

,

∴④正確.

故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,ABAC,BD平分∠ABCAC于點D,DE平分∠ADBAB于點E,過點CCFABED延長線于點F,若∠A48°

1)求∠DBC的度數(shù);

2)求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,ABCDEF的頂點都在格點上,P1,P2,P3,P4,P5DEF邊上的5個格點,請按要求完成下列各題:

(1)試證明三角形ABC為直角三角形;

(2)判斷ABCDEF是否相似,并說明理由;

(3)畫一個三角形,使它的三個頂點為P1,P2,P3,P4,P5中的3個格點并且與ABC相似(要求:不寫作法與證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某小區(qū)居民使用共享單車次數(shù)的情況,某研究小組隨機采訪該小區(qū)的10位居民,得到這10位居民一周內使用共享單車的次數(shù)統(tǒng)計如下:

使用次數(shù)

0

5

10

15

20

人數(shù)

1

1

4

3

1

1)這10位居民一周內使用共享單車次數(shù)的中位數(shù)是 次,眾數(shù)是 次.

2)若小明同學把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是 .(填中位數(shù)眾數(shù)平均數(shù)

3)若該小區(qū)有2000名居民,試估計該小區(qū)居民一周內使用共享單車的總次數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,分別是的中點,,連接于點

1)求證:

2)過點于點,交于點,若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形中,,

1)請用尺規(guī)在邊上確定一點,連接、,使平分;(保留作圖痕跡,不寫作法)

2)判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小明設計的“作等腰三角形外接圓”的尺規(guī)作圖過程.

已知:如圖1,在中,AB=AC.

求作:等腰的外接圓.

作法:

①如圖2,作的平分線交BC于D ;

②作線段AB的垂直平分線EF;

③EF與AD交于點O;

④以點O為圓心,以OB為半徑作圓.

所以,就是所求作的等腰的外接圓.

根據(jù)小明設計的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補全圖形(保留痕跡);

(2)完成下面的證明.

AB=AC,,

_________________________.

AB的垂直平分線EF與AD交于點O,

OA=OB,OB=OC

(填寫理由:______________________________________

OA=OB=OC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,反比例函數(shù)y(k≠0)的圖象經(jīng)過等腰AOB底邊OB的中點CAB邊上一點D,已知A(4,0),∠AOB30°,則k的值為(  )

A.2B.3C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形ABCD的面積為20,頂點Ay軸上,頂點Cx軸上,頂點D在雙曲線的圖象上,邊CDy軸于點E,若,則k的值為______.

查看答案和解析>>

同步練習冊答案