【題目】如圖,ABCCDE都是等邊三角形,點E、F分別在AC、BC上,且EFAB

1)求證:四邊形EFCD是菱形;

2)設(shè)CD2,求DF兩點間的距離.

【答案】1)見解析;(2

【解析】

1)由等邊三角形的性質(zhì)得出EDCDCE,證出△CEF是等邊三角形,得出EFCFCE,得出EDCDEFCF,即可得出結(jié)論;

2)連接DF,與CE相交于點G,根據(jù)菱形的性質(zhì)求出DG,即可得出結(jié)果.

1)證明:∵△ABC與△CDE都是等邊三角形,

EDCDCE,∠A=∠B=∠BCA60°.

EFAB

∴∠CEF=∠A60°,∠CFE=∠B60°,

∴∠CEF=∠CFE=∠ACB,

∴△CEF是等邊三角形,

EFCFCE,

EDCDEFCF,

∴四邊形EFCD是菱形.

2)連接DFCE交于點G

∵四邊形EFCD是菱形

DFCE, DF2DG

CD2,EDC是等邊三邊形

CG1DG

DF2DG,即D、F兩點間的距離為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某電信公司提供了A,B兩種方案的移動通訊費用y(元)與通話時間x(元)之間的關(guān)系,則下列結(jié)論中正確的有( 。

(1)若通話時間少于120分,則A方案比B方案便宜20元;

(2)若通話時間超過200分,則B方案比A方案便宜12元;

(3)若通訊費用為60元,則B方案比A方案的通話時間多;

(4)若兩種方案通訊費用相差10元,則通話時間是145分或185分.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB切⊙O于A.B,點C在AB上,DE切⊙O于C,交PA、PB于D.E,已知PO=5cm,⊙O的半徑為3cm,則△PDE的周長是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸負(fù)半軸交于點,與軸正半軸交于點,點為直線上一點,,點軸正半軸上一點,連接,的面積為48

(1)如圖1,求點的坐標(biāo);

(2)如圖2,點分別在線段上,連接,點的橫坐標(biāo)為,點的橫坐標(biāo)為,求的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

(3)(2)的條件下,如圖3,連接,點軸正半軸上點右側(cè)一點,點為第一象限內(nèi)一點,,,延長于點,點上一點,直線經(jīng)過點和點,過點,交直線于點,連接,請你判斷四邊形的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=x-3與反比例函數(shù)y=的圖象相交于點A4,n),與x軸相交于點B

1)填空:n的值為 ,k的值為 ;

2)以AB為邊作菱形ABCD,使點Cx軸正半軸上,點D在第一象限,求點D的坐標(biāo);

3)觀察反比函數(shù)y=的圖象,當(dāng)y≥-2時,請直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點E、F在邊AD上,AF=DE,連接BF、CE

1)求證:∠CBF=BCE

2)若點G、M、N在線段BFBCCE上,且 FG=MN=CN.求證:MG=NF;

3)在(2)的條件下,當(dāng)∠MNC=2BMG時,四邊形FGMN是什么圖形,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個袋中有3張形狀大小完全相同的卡片,編號為1、2、3,先任取一張,將其編號記為m,再從剩下的兩張中任取一張,將其編號記為n

(1)請用樹狀圖或者列表法,表示事件發(fā)生的所有可能情況;

(2)求關(guān)于x的方程x2+mx+n=0有兩個不相等實數(shù)根的概率;

(3)任選一個符合(2)題條件的方程,設(shè)此方程的兩根為x1、x2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD是直角梯形,AB=18cm,CD=15cm,AD=6cm,點PB點開始,沿BA邊向點A1cm/s的速度移動,點QD點開始,沿DC邊向點C2cm/s的速度移動,如果P、Q分別從BD同時出發(fā),P、Q有一點到達(dá)終點時運動停止,設(shè)移動時間為t

1t為何值時四邊形PQCB是平行四邊形?

2t為何值時四邊形PQCB是矩形?

3t為何值時四邊形PQCB是等腰梯形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E、F、G、H分別是BD、BC、AC、AD的中點,且AB=CD.下列結(jié)論:①EG⊥FH,②四邊形EFGH是矩形,③HF平分∠EHG,④EG= (BC-AD),⑤四邊形EFGH是菱形.其中正確的個數(shù)是 ( )

A.1 B.2 C.3 D.4

查看答案和解析>>

同步練習(xí)冊答案