【題目】已知:一組數(shù)據(jù),,的平均數(shù)是22,方差是13,那么另一組數(shù)據(jù),,的方差是__________

【答案】117

【解析】

根據(jù)平均數(shù),方差的公式進(jìn)行計(jì)算.

解:依題意,得==22,

=110,

3a-2,3b-2,3c-2,3d-2,3e-2的平均數(shù)為

==×3×110-2×5=64,

∵數(shù)據(jù)a,b,cd,e的方差13,

S2=[a-222+b-222+c-222+d-222+e-222]=13,

∴數(shù)據(jù)3a-2,3b-2,3c-2,3d-2,3e-2方差

S′2=[3a-2-642+3b-2-642+3c-2-642+3d-2-642+3e-2-642]

=[a-222+b-222+c-222+d-222+e-222]×9

=13×9

=117

故答案為:117

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,A30°,點(diǎn)DAB上,以BD為直徑的⊙OAC于點(diǎn)E,連接DE并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)F

1)求證:BDF是等邊三角形;

2)連接AFDC,若BC3,寫出求四邊形AFCD面積的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的⊙O分別與BC、AC交于點(diǎn)D、E,過(guò)點(diǎn)DDFAC于點(diǎn)F.

(1)若⊙O的半徑為3,CDF=15°,求陰影部分的面積;

(2)求證:DF是⊙O的切線;

(3)求證:∠EDF=DAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平行四邊形的一邊長(zhǎng)為10,則對(duì)角線的長(zhǎng)度可能取下列數(shù)組中的( ).

A.4、8B.10、32C.8、10D.11、13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD中,E在AD上,F(xiàn)在AB上,EFCE于E,DE=AF=2,矩形的周長(zhǎng)為24,則BF的長(zhǎng)為(  )

A. 3 B. 4 C. 5 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被它的兩條直徑分成了四個(gè)分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動(dòng)轉(zhuǎn)盤,待轉(zhuǎn)盤自動(dòng)停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱為轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次(若指針指向兩個(gè)扇形的交線,則不計(jì)轉(zhuǎn)動(dòng)的次數(shù),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤,直到指針指向一個(gè)扇形的內(nèi)部為止)

(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;

(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O的直徑為10,點(diǎn)A,點(diǎn)B,點(diǎn)C在O上,CAB的平分線交O于點(diǎn)D

1如圖,若BC為O的直徑,AB=6,求AC,BD,CD的長(zhǎng);

2如圖,若CAB=60°,求BD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,分別以AB、AD為邊向外作等邊ABE、ADF,延長(zhǎng)CBAE于點(diǎn)G,點(diǎn)G在點(diǎn)A、E之間,連接CE、CF,EF,則以下四個(gè)結(jié)論一定正確的是:①△CDF≌△EBC;②∠CDF=EAF;③△ECF是等邊CGAE( 。

A. 只有①② B. 只有①②③ C. 只有③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù) yax2+bx+ca≠0)中,函數(shù) y 與自變量 x 的部分對(duì)應(yīng)值如下表:

(1)求二次函數(shù)的解析式;

(2)求該函數(shù)圖象與 x 軸的交點(diǎn)坐標(biāo);

(3)不等式 ax2+bx+c+3>0 的解集是

查看答案和解析>>

同步練習(xí)冊(cè)答案