【題目】(2017浙江省湖州市,第16題,4分)如圖,在平面直角坐標(biāo)系xOy中,已知直線y=kx(k>0)分別交反比例函數(shù)和在第一象限的圖象于點(diǎn)A,B,過點(diǎn)B作 BD⊥x軸于點(diǎn)D,交的圖象于點(diǎn)C,連結(jié)AC.若△ABC是等腰三角形,則k的值是______.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DB∥AC,且DB=AC,E是AC的中點(diǎn),
(1)求證:BC=DE;
(2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,將邊長為2的正方形OABC如圖①放置,O為原點(diǎn).
(Ⅰ)若將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°時(shí),如圖②,求點(diǎn)A的坐標(biāo);
(Ⅱ)如圖③,若將圖①中的正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)75°時(shí),求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心,在周圍數(shù)十千米范圍內(nèi)形氣旋風(fēng)暴,有極強(qiáng)的破壞力,此時(shí)某臺(tái)風(fēng)中心在海域 B 處,在沿海城市 A 的正南方向 240 千米,其中心風(fēng)力為12 級,每遠(yuǎn)離臺(tái)風(fēng)中心 25 千米,臺(tái)風(fēng)就會(huì)減弱一級,如圖所示,該臺(tái)風(fēng)中心正以 20 千米/時(shí)的速度沿 BC 方向移動(dòng).已知 AD⊥BC 且AD= AB,且臺(tái)風(fēng)中心的風(fēng)力不變,若城市所受風(fēng)力達(dá)到或超過 4 級,則稱受臺(tái)風(fēng)影響.試問:
(1)A 城市是否會(huì)受到臺(tái)風(fēng)影響?請說明理由.
(2)若會(huì)受到臺(tái)風(fēng)影響,那么臺(tái)風(fēng)影響該城市的持續(xù)時(shí)間有多長?
(3)該城市受到臺(tái)風(fēng)影響的最大風(fēng)力為幾級?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景
如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。
類比研究
如圖2,在正△ABC的內(nèi)部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(diǎn)(D,E,F(xiàn)三點(diǎn)不重合)。
(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進(jìn)行證明;
(2)△DEF是否為正三角形?請說明理由;
(3)進(jìn)一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè),,,請?zhí)剿?/span>,,滿足的等量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2m+3的正方形紙片中剪出一個(gè)邊長為m+3的正方形之后,剩余部分可剪拼成一個(gè)長方形,
(1)求拼接成的長方形面積.
(2)若拼成的長方形一邊長為 m,求此長方形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式>x﹣1.
(1)當(dāng)m=1時(shí),求該不等式的解集;
(2)m取何值時(shí),該不等式有解,并求出解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將在Rt△ABC繞其銳角頂點(diǎn)A旋轉(zhuǎn)90°得到在Rt△ADE,連接BE,延長DE、BC相交于點(diǎn)F,則有∠BFE=90°,且四邊形ACFD是一個(gè)正方形.
(1)判斷△ABE的形狀,并證明你的結(jié)論;
(2)用含b代數(shù)式表示四邊形ABFE的面積;
(3)求證:a2+b2=c2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com