【題目】尺規(guī)作圖:過直線外一點作已知直線的平行線.
已知:如圖,直線l與直線l外一點P.
求作:過點P與直線l平行的直線.
已知:如圖,直線l與直線l外一點P.
求作:過點P與直線l平行的直線.
作法如下:
(1)在直線l上任取兩點A、B,連接AP、BP;
(2)以點B為圓心,AP長為半徑作弧,以點P為圓心,AB長為半徑作弧,如圖所示,兩弧相交于點M;
(3)過點P、M作直線;
(4)直線PM即為所求.
(1)在直線l上任取兩點A、B,連接AP、BP;
(2)以點B為圓心,AP長為半徑作弧,以點P為圓心,AB長為半徑作弧,如圖所示,兩弧相交于點M;
(3)過點P、M作直線;
(4)直線PM即為所求.
請回答:PM平行于l的依據(jù)是_____.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,點P從A點出發(fā),以1cm/s的速度向B點移動,點Q從B點出發(fā),以2cm/s的速度向C點移動.如果P、Q兩點同時出發(fā),經(jīng)過幾秒后△PBQ的面積等于4cm2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在平面直角坐標系中,直線l:y=x﹣與x軸交于點A,經(jīng)過點A的拋物線y=ax2﹣3x+c的對稱軸是x=.
(1)求拋物線的解析式;
(2)平移直線l經(jīng)過原點O,得到直線m,點P是直線m上任意一點,PB⊥x軸于點B,PC⊥y軸于點C,若點E在線段OB上,點F在線段OC的延長線上,連接PE,PF,且PE=3PF.求證:PE⊥PF;
(3)若(2)中的點P坐標為(6,2),點E是x軸上的點,點F是y軸上的點,當PE⊥PF時,拋物線上是否存在點Q,使四邊形PEQF是矩形?如果存在,請求出點Q的坐標,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似但不全等,我們就把這條對角線叫做這個四邊形的“相似對角線”.
(1)如圖1,在四邊形中,,,,對角線平分.求證:是四邊形的“相似對角線”;
(2)如圖2,已知格點,請你在正方形網(wǎng)格中畫出所有的格點四邊形,使四邊形是以為“相似對角線”的四邊形;(注:頂點在小正方形頂點處的多邊形稱為格點多邊形)
(3)如圖3,四邊形中,點在射線:上,點在軸正半軸上,對角線平分,連接.若是四邊形的“相似對角線”,,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC=∠ADC=90°,BD⊥AC,垂足為P.
(1)請作出Rt△ABC的外接圓⊙O;(保留作圖痕跡,不寫作法)
(2)點D在⊙O上嗎?說明理由;
(3)試說明:AC平分∠BAD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】體育老師為了解本校九年級女生1分鐘“仰臥起坐”體育測試項目的達標情況,從該校九年級136名女生中,隨機抽取了20名女生,進行了1分鐘仰臥起坐測試,獲得數(shù)據(jù)如下:
收集數(shù)據(jù):抽取20名女生的1分鐘仰臥起坐測試成績(個)如下:
38 46 42 52 55 43 59 46 25 38
35 45 51 48 57 49 47 53 58 49
(1)整理、描述數(shù)據(jù):請你按如下分組整理、描述樣本數(shù)據(jù),把下列表格補充完整:
范圍 | 25≤x≤29 | 30≤x≤34 | 35≤x≤39 | 40≤x≤44 | 45≤x≤49 | 50≤x≤54 | 55≤x≤59 |
人數(shù) |
|
|
|
|
|
|
|
(說明:每分鐘仰臥起坐個數(shù)達到49個及以上時在中考體育測試中可以得到滿分)
(2)分析數(shù)據(jù):樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、滿分率如下表所示:
平均數(shù) | 中位數(shù) | 滿分率 |
46.8 | 47.5 | 45% |
得出結論:①估計該校九年級女生在中考體育測試中1分鐘“仰臥起坐”項目可以得到滿分的人數(shù)為 ;
②該中心所在區(qū)縣的九年級女生的1分鐘“仰臥起坐”總體測試成績?nèi)缦拢?/span>
平均數(shù) | 中位數(shù) | 滿分率 |
45.3 | 49 | 51.2% |
請你結合該校樣本測試成績和該區(qū)縣總體測試成績,為該校九年級女生的1分鐘“仰臥起坐”達標情況做一下評估,并提出相應建議.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把長方形紙片ABCD沿對角線折疊,設重疊部分為△EBD,那么,有下列說法:①△EBD是等腰三角形,EB=ED;②折疊后∠ABE和∠CBD一定相等;③折疊后得到的圖形是軸對稱圖形;④△EBA和△EDC一定是全等三角形.其中正確的是( )
A. ①②③B. ①③④C. ①②④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖1,拋物線y=ax2+bx+3與x軸交于點B、C,與y軸交于點A,且AO=CO,BC=4.
(1)求拋物線解析式;
(2)如圖2,點P是拋物線第一象限上一點,連接PB交y軸于點Q,設點P的橫坐標為t,線段OQ長為d,求d與t之間的函數(shù)關系式;
(3)在(2)的條件下,過點Q作直線l⊥y軸,在l上取一點M(點M在第二象限),連接AM,使AM=PQ,連接CP并延長CP交y軸于點K,過點P作PN⊥l于點N,連接KN、CN、CM.若∠MCN+∠NKQ=45°時,求t值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次安全知識測驗中,學生得分均為整數(shù),滿分10分,成績達到9分為優(yōu)秀,這次測驗中甲、乙兩組學生人數(shù)相同,成績?nèi)缦聝蓚統(tǒng)計圖:
(1)在乙組學生成績統(tǒng)計圖中,8分所在的扇形的圓心角為 度;
(2)請補充完整下面的成績統(tǒng)計分析表:
平均分 | 方差 | 眾數(shù) | 中位數(shù) | 優(yōu)秀率 | |
甲組 | 7 | 1.8 | 7 | 7 | 20% |
乙組 | 10% |
(3)甲組學生說他們的優(yōu)秀率高于乙組,所以他們的成績好于乙組,但乙組學生不同意甲組學生的說法,認為他們組的成績要好于甲組,請你給出兩條支持乙組學生觀點的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com