【題目】設(shè)計一個商標圖案:先作矩形ABCD,使AB2BC,AB8,再以點A為圓心、AD的長為半徑作半圓,交BA的延長線于F,連FC.圖中陰影部分就是商標圖案,該商標圖案的面積等于(

A. 48B. 416C. 38D. 316

【答案】A

【解析】

根據(jù)矩形的性質(zhì)得到AD=BC=4,FAD=90°,根據(jù)圖形得到S=SABCD+SADF-SFBC

解:∵矩形ABCD中,AB=2BC,且AB=8cm,

AD=BC=4

S=SABCD+SADF-SFBC

SABCD=ABBC=8×4=32,

SADF=

SFBC=BCFB=×4×8+4=24,

S=32+4π-24=8+4πcm2

所以商標圖案的面積為(8+4πcm2

故選:A

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在創(chuàng)客教育理念的指引下,國內(nèi)很多學校都紛紛建立創(chuàng)客實踐室及創(chuàng)客空間,致力于從小培養(yǎng)孩子的創(chuàng)新精神和創(chuàng)造能力,鄭州市某校開設(shè)了“3D”打印、數(shù)學編程、智能機器人、陶藝制作”四門創(chuàng)客課程,為了解學生對這四門創(chuàng)客課程的喜愛情況,數(shù)學興趣小組對全校學生進行了隨機問卷調(diào)查(問卷調(diào)查表如表所示),將調(diào)查結(jié)果整理后繪制成圖1、圖2兩幅均不完整的統(tǒng)計圖表.

最受歡理的創(chuàng)客課程詞查問卷

你好!這是一份關(guān)于你喜歡的創(chuàng)客深程問卷調(diào)查表,請你在表格中選擇一個(只能選擇一個)你最喜歡的課程選項在其后空格內(nèi)打“√“,非常感謝你的合作.

請根據(jù)圖表中提供的值息回答下列問題:

1)統(tǒng)計表中的a=  ,b=  ;

2)“D”對應(yīng)扇形的圓心角為  ;

3)根據(jù)調(diào)查結(jié)果,請你估計該校2000名學生中最喜歡“數(shù)學編程”創(chuàng)客課程的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點,與軸交于點,其中.

(1)若直線經(jīng)過、兩點,求直線和拋物線的解析式;

(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標;

(3)設(shè)點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線Wy=x-4x+2的頂點為A,與x軸交于點B、C.

1)求∠ABC的正切值;

2)若點P是拋物線W上的一點,過P作直線PQ垂直x軸,將拋物線W關(guān)于直線PQ對稱,得到拋物線,設(shè)拋物線的頂點,問:是否存在這樣的點P,使得APAˊ為直角三角形?若存在,求出對稱所得的拋物線的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,自卸車車廂的一個側(cè)面是矩形ABCD,AB3米,BC0.5米,車廂底部距離地面1.2米.卸貨時,車廂傾斜的角度θ60°,問此時車廂的最高點A距離地面多少米?(精確到1m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個矩形場地.

(1)怎樣圍才能使矩形場地的面積為750m2?

(2)能否使所圍矩形場地的面積為810m2 ,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形A1ABC的邊長為1,正方形A2A1B1C1邊長為2.正方形A3A2B2C2邊長為4,…依此規(guī)律繼續(xù)做正方形An+1AnBnn,其中點A,A1A2,A3,…在同一條直線上,連接AC1A1B1于點D1,連接A1C2A2B2于點D2,…,若記△AA1D1的面積為S1,△A1A2D2的面積為S2…,△An1AnDn的面積為Sn,則S2019_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));當﹣1<x<3時,y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:若一個四邊形能被其中的一條對角線分割成兩個相似三角形,則稱這個四邊形為友誼四邊形.我們熟知的平行四邊形就是友誼四邊形,

1)如圖1,在4×4的正方形網(wǎng)格中有一個RtABC,請你在網(wǎng)格中找格點D,使得四邊形ABCD是被AC分割成的友誼四邊形,(要求畫出點D2種不同位置)

2)如圖2BD平分∠ABC,BD4,BC8,四邊形ABCD是被BD分割成的友誼四邊形,求AB長;

3)如圖3,圓內(nèi)接四邊形ABCD中,∠ABC60,點E的中點,連結(jié)BECD于點F,連結(jié)AF,∠DAF30°

①求證:四邊形ABCF友誼四邊形

②若△ABC的面積為6,求線段BF的長.

查看答案和解析>>

同步練習冊答案