【題目】有長(zhǎng)為24m的籬笆,現(xiàn)一面利用墻(墻的最大可用長(zhǎng)度a為10m)圍成中間隔有一道籬笆的長(zhǎng)方形花圃,設(shè)花圃的寬AB為xm,面積為Sm2.
(1)求S與x的函數(shù)關(guān)系式及x值的取值范圍;
(2)要圍成面積為45m2的花圃,AB的長(zhǎng)是多少米?
(3)當(dāng)AB的長(zhǎng)是多少米時(shí),圍成的花圃的面積最大?
【答案】(1)S=﹣3x2+24x( );(2)AB長(zhǎng)為5m;(3)當(dāng)AB=m時(shí),圍成的花圃的面積最大.
【解析】
(1)設(shè)花圃寬AB為xm,則長(zhǎng)為(24-3x),利用長(zhǎng)方形的面積公式,可求出S與x關(guān)系式,根據(jù)墻的最大長(zhǎng)度求出x的取值范圍;
(2)根據(jù)(1)所求的關(guān)系式把S=45代入即可求出x,即AB;
(3)根據(jù)二次函數(shù)的性質(zhì)及x的取值范圍求出即可.
解:(1)根據(jù)題意,得S=x(24﹣3x),
即所求的函數(shù)解析式為:S=﹣3x2+24x,
又∵0<24﹣3x≤10,
∴;
(2)根據(jù)題意,設(shè)花圃寬AB為xm,則長(zhǎng)為(24-3x),
∴﹣3x2+24x=45.
整理,得x2﹣8x+15=0,
解得x=3或5,
當(dāng)x=3時(shí),長(zhǎng)=24﹣9=15>10不成立,
當(dāng)x=5時(shí),長(zhǎng)=24﹣15=9<10成立,
∴AB長(zhǎng)為5m;
(3)S=24x﹣3x2=﹣3(x﹣4)2+48
∵墻的最大可用長(zhǎng)度為10m,0≤24﹣3x≤10,
∴,
∵對(duì)稱軸x=4,開口向下,
∴當(dāng)x=m,有最大面積的花圃.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線y=-x+12分別交x軸、y軸于A、B點(diǎn),將△AOB折疊,使A點(diǎn)恰好落在OB的中點(diǎn)C處,折痕為DE.
(1)求AE的長(zhǎng)及sin∠BEC的值;
(2)求△CDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊三角形ABC在平面直角坐標(biāo)系中的位置如圖所示,C(1,0),點(diǎn)A在y軸的正半軸上,把等邊三角形ABC沿x軸正半軸作無滑動(dòng)的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)120°,經(jīng)過2018次翻轉(zhuǎn)之后,點(diǎn)C的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知方程,
(1)求證:方程一定有兩個(gè)不相等的實(shí)數(shù)根;
(2)取何值時(shí),方程二根中一個(gè)比3大,一個(gè)比3小。(可用數(shù)形結(jié)合來解)
(3)取何值時(shí)方程的兩個(gè)根異號(hào)且負(fù)的實(shí)數(shù)根的絕對(duì)值大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E是正方形內(nèi)部一點(diǎn),連接BE,CE,且∠ABE=∠BCE,點(diǎn)P是邊AB上一動(dòng)點(diǎn),連接PD,PE,則PD+PE的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1,y2.若y1≠y2,取y1,y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=0.那么使得M=1的x值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,半徑BO與AC相交于點(diǎn)D,BO的延長(zhǎng)線與⊙O交于點(diǎn)F,與過點(diǎn)C的切線NC交于點(diǎn)M,過點(diǎn)D作DE⊥BC,垂足為E,連接CF,已知MF=FC.
(1)求證:∠M=30°;
(2)①若=,求的值;
②當(dāng)△DEC的面積是它最大值的時(shí),求的值.
(3)若DE=AB,試判斷點(diǎn)D所在的位置.(請(qǐng)直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于A(m,3),B(-3,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)觀察函數(shù)圖象,直接寫出關(guān)于x的不等式>kx+b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮和小花約定周六早晨在一直線公路AB上進(jìn)行(A→B→A)往返跑訓(xùn)練,兩人同時(shí)從A點(diǎn)出發(fā),小亮以較快的速度勻速跑到點(diǎn)B休息1分鐘后立即原速跑回A點(diǎn),小花先勻速慢跑了5分鐘后,把速度提高到原來的倍,又經(jīng)過6分鐘后超越了小亮一段距離,小花又將速度降低到出發(fā)時(shí)的速度,并以這一速度勻速跑到B點(diǎn)看到休息的小亮,然后立即以出發(fā)時(shí)的速度跑回A點(diǎn).若兩人之間的距離記為y(米),小花的跑步時(shí)間記為x(分),y和x的部分函數(shù)關(guān)系如圖所示,則當(dāng)小亮回到A點(diǎn)時(shí)小花距A點(diǎn)________米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com