【題目】黃岡市人杰地靈、山青水秀,擁有豐富的旅游資源,楚龍旅行社為吸引市民組團去大別山某風景區(qū)旅游,推出了如下收費標準:

一單位組織員工去該風景區(qū)旅游,共支付給楚龍旅行社旅游費用元,請問該單位這次共有多少員工去旅游?

【答案】該單位這次共有30名員工去旅游

【解析】

根據(jù)共支付給旅行社旅游費用27 000元,確定旅游的人數(shù)的范圍,再根據(jù)每人的旅游費用×人數(shù)=總費用,設該單位這次共有x名員工去風景區(qū)旅游.即可由對話框,超過25人的人數(shù)為(x-25)人,每人降低20元,共降低了20(x-25)元.實際每人收了[1000-20(x-25)]元,列出方程求解.

設該單位這次共有名員工去旅游,

25×1000=25000<27000

>25

整理得

解得:

≥700

答:該單位這次共有30名員工去旅游

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC和△ADE中,∠BAC=∠EAD,ABAC,ADAE,連接CD、AE交于點F

1)求證:BECD

2)當∠BAC=∠EAD30°,ADAB時(如圖2),延長DC、AB交于點G,請直接寫出圖中除△ABC、△ADE以外的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(-2,1),B(-1,4),C(-3,3).

(1)畫出△ABC關于y軸對稱的△A1B1C1,并寫出A1點的坐標及sin∠B1A1C1的值;

(2)以原點O為位似中心,位似比為1:2,在y軸的左側,畫出將△ABC放大后的△A2B2C2,并寫出A2點的坐標;

(3)若點D(a,b)在線段AB上,直接寫出經(jīng)過(2)的變化后點D的對應點D2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明與同學們在數(shù)學動手實踐操作活動中,將銳角為的直角三角板MPN的一個銳角頂點P與正方形ABCD的頂點A重合,正方形ABCD固定不動,然后將三角板繞著點A旋轉,的兩邊分別與正方形的邊BCDC或其延長線相交于點E、F,連結EF

(探究發(fā)現(xiàn))

在三角板旋轉過程中,當的兩邊分別與正方形的邊CBDC相交時,如圖所示,請直接寫出線段BE、DF、EF滿足的數(shù)量關系:______

(拓展思考)

在三角板旋轉過程中,當的兩邊分別與正方形的邊CBDC的延長線相交時,如圖所示,則線段BE、DF、EF又將滿足怎樣的數(shù)量關系:______,并證明你的結論;

(創(chuàng)新應用)

若正方形的邊長為4,在三角板旋轉過程中,當的一邊恰好經(jīng)過BC邊的中點時,試求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種優(yōu)質蜜柚,投入市場銷售時,經(jīng)調查,該蜜柚每天銷售量y(千克)與銷售單價x(元/千克)之間符合一次函數(shù)關系,如圖所示.

1)求yx的函數(shù)關系式;

2)某農(nóng)戶今年共采摘該蜜柚4500千克,其保質期為40天,若以18/千克銷售,問能否在保質期內(nèi)銷售完這批蜜柚?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)一個不透明的盒中裝有若干個除顏色外都相同的紅球與黃球.在這個口袋中先放入2個白球,再進行摸球試驗,摸球試驗的要求:先攪拌均勻,每次摸出一個球,記錄顏色后放回盒中,再繼續(xù)摸球,全班一共做了400次這樣的摸球試驗.如果知道摸出白球的頻數(shù)是40,你能估計在未放入白球前,袋中原來共有多少個小球嗎?

(2)提出問題:一個不透明的盒中裝有若干個只有顏色不一樣的紅球與黃球,怎樣估算不同顏色球的數(shù)量?

活動操作:先從盒中摸出8個球,畫上記號放回盒中.再進行摸球試驗,摸球試驗的要求:先攪拌均勻,每次摸出一個球,記錄顏色、是否有記號,放回盒中,再繼續(xù)摸球、記錄、放回袋中.

統(tǒng)計結果:摸球試驗活動一共做了50次,統(tǒng)計結果如下表:

球的類別

無記號

有記號

紅色

黃色

紅色

黃色

摸到的次數(shù)

18

28

2

2

由上述的摸球試驗推算:

盒中紅球、黃球各占總球數(shù)的百分比分別是多少?

盒中有紅球多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,已知.

1)求的度數(shù);

2)求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線C1的頂點為A,與x軸的正半軸交于點B.

(1)請直接寫出A、B兩點的坐標,A ,B .

(2)將拋物線C1上的點的橫坐標和縱坐標都擴大到原來的2倍,求變換后得到的拋物線的解析式;

(3)將拋物線C1上的點(x,y)變?yōu)椋╧x,ky)(|k|>1),變換后得到的拋物線記作C2.拋物線C2的頂點為C,點P在拋物線C2上,滿足S△PAC=S△ABC,且∠ACP=90°.

①當k>1時,求k的值;

②當k<-1時,請你直接寫出k的值,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明欲測量一座古塔的高度,他拿出一根竹桿豎直插在地面上,然后自己退后,使眼睛通過竹桿的頂端剛好看到塔頂,若小明眼睛離地面,竹桿頂端離地面,小明到竹桿的距離,竹桿到塔底的距離,求這座古塔的高度.

查看答案和解析>>

同步練習冊答案