【題目】在平面直角坐標(biāo)系中,拋物線N過(guò)A(13),B(4,8),O(0,0)三點(diǎn)

(1)求該拋物線和直線AB的解析式.

(2)平移拋物線N,求同時(shí)滿足以下兩個(gè)條件的平移后的拋物線解析式:①平移后拋物線的頂點(diǎn)在直線AB上;②設(shè)平移后拋物線與y軸交于點(diǎn)C,如果SABC3SABO.

【答案】(1)yx22xyx+4;(2)平移后的拋物線解析式為y(x+4)2y(x3)2+7.

【解析】

(1)利用待定系數(shù)法求拋物線M和直線AB的解析式;

(2)先求出直線ABy軸的交點(diǎn)坐標(biāo)為(0,4),設(shè)平移后拋物線的頂點(diǎn)坐標(biāo)為(t,t+4),則平移后的拋物線解析式為y(xt)2+t+4,接著表示出N(0,t2+t+4),利用三角形面積公式得到|t2+t+44|(4+1)×4×(4+1),然后解絕對(duì)值方程求出得到平移后的拋物線解析式.

解:(1)設(shè)拋物線解析式為yax2+bx+c,

A(13),B(4,8),O(00)代入得 ,解得,

∴拋物線解析式為yx22x;

設(shè)直線AB的解析式為ymx+n

A(1,3)B(4,8)代入得,解得m1,n4,

∴直線AB的解析式為yx+4

(2)當(dāng)x0時(shí),yx+44,則直線ABy軸的交點(diǎn)坐標(biāo)為(04),

設(shè)平移后拋物線的頂點(diǎn)坐標(biāo)為(tt+4),則平移后的拋物線解析式為y(xt)2+t+4

當(dāng)x0時(shí),y(0t)2+t+4t2+t+4,則C(0,t2+t+4)

SABC3SABO,

|t2+t+44|(4+1)×4×(4+1),

|t2+t|12,

方程t2+t=﹣12沒(méi)有實(shí)數(shù)解,

解方程t2+t12t1=﹣4t23,

∴平移后的拋物線解析式為y(x+4)2y(x3)2+7.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知RtABC中,∠ACB90°,∠B60°,BC4,DAB邊上一點(diǎn),且BD3,將△BCD繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)60°到△BCD′,則AD′的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某年級(jí)組織學(xué)生參加夏令營(yíng)活動(dòng),本次夏令營(yíng)分為甲、乙、丙三組進(jìn)行活動(dòng).下面兩幅統(tǒng)計(jì)圖反映了學(xué)生報(bào)名參加夏令營(yíng)的情況,請(qǐng)你根據(jù)圖中的信息回答下列問(wèn)題:

(1)該年級(jí)報(bào)名參加丙組的人數(shù)為 ;

(2)該年級(jí)報(bào)名參加本次活動(dòng)的總?cè)藬?shù) ,并補(bǔ)全頻數(shù)分布直方圖;

(3)根據(jù)實(shí)際情況,需從甲組抽調(diào)部分同學(xué)到丙組,使丙組人數(shù)是甲組人數(shù)的3倍,應(yīng)從甲組抽調(diào)多少名學(xué)生到丙組?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列5個(gè)結(jié)論,其中正確的結(jié)論有( 。

①abc<0

②3a+c>0

③4a+2b+c<0

④2a+b=0

⑤b2>4ac

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(1,0),對(duì)稱軸為直線x2,下列結(jié)論:(1)4a+b0(2)9a3bc(3)9a+b+c0(4)若方程a(x+1)(x5)=﹣2的兩根為x1x2,且x1x2,則x115x2,其中正確的結(jié)論有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)與一次函數(shù)yax+c在同一坐標(biāo)系中的圖象大致為(  。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系xOy中,有AB為斜邊的等腰直角三角形ABC,其中點(diǎn)A0,2),點(diǎn)C(﹣10),拋物線yax2+ax2經(jīng)過(guò)B點(diǎn).

1)求B點(diǎn)的坐標(biāo);

2)求拋物線的解析式;

3)在拋物線上是否存在點(diǎn)N(點(diǎn)B除外),使得△ACN仍然是以AC為直角邊的等腰直角三角形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2k+1)x+k2=0①有兩個(gè)不相等的實(shí)數(shù)根.

(1)求k的取值范圍;

(2)設(shè)方程①的兩個(gè)實(shí)數(shù)根分別為x1,x2,當(dāng)k=1時(shí),求x12+x22的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在同一平面內(nèi),將ABCA點(diǎn)逆時(shí)針旋轉(zhuǎn)到ADE的位置.若ACDE,∠ABD62°,則∠ACB的度數(shù)為( 。

A.56°B.44°C.34°D.40°

查看答案和解析>>

同步練習(xí)冊(cè)答案