【題目】已知直線CD⊥AB于點(diǎn)O,∠EOF=90°,射線OP平分∠COF.
(1)如圖1,∠EOF在直線CD的右側(cè):
①若∠COE=30°,求∠BOF和∠POE的度數(shù);
②請(qǐng)判斷∠POE與∠BOP之間存在怎樣的數(shù)量關(guān)系?并說(shuō)明理由.
(2)如圖2,∠EOF在直線CD的左側(cè),且點(diǎn)E在點(diǎn)F的下方:
①請(qǐng)直接寫(xiě)出∠POE與∠BOP之間的數(shù)量關(guān)系;
②請(qǐng)直接寫(xiě)出∠POE與∠DOP之間的數(shù)量關(guān)系.
【答案】(1)①∠BOF= 30°,∠POE=30°,②∠POE=∠BOP(2)①∠POE=∠BOP②∠POE+∠DOP=270°
【解析】
(1)①根據(jù)余角的性質(zhì)得到∠BOF=∠COE=30°,求得∠COF=90°+30°=120°,根據(jù)角平分線的定義即可得到結(jié)論;
②根據(jù)垂線的性質(zhì)和角平分線的定義即可得到結(jié)論;
(2)①根據(jù)角平分線的定義得到∠COP=∠POF,求得∠POE=90°+∠POF,∠BOP=90°+∠COP,于是得到∠POE=∠BOP;
②根據(jù)周角的定義即可得到結(jié)論.
(1)①∵CD⊥AB,
∴∠COB=90°,
∵∠EOF=90°,
∴∠COE+∠BOE=∠BOE+∠BOF=90°,
∴∠BOF=∠COE=30°,
∴∠COF=90°+30°=120°,
∵OP平分∠COF,
∴∠COP=∠COF=60°,
∴∠POE=∠COP﹣∠COE=30°;
②CD⊥AB,
∴∠COB=90°,
∵∠EOF=90°,
∴∠COE+∠BOE=∠BOE+∠BOF=90°,
∴∠BOF=∠COE,
∵OP平分∠COF,
∴∠COP=∠POF,
∴∠POE=∠COP﹣∠COE,∠BOP=∠POF﹣∠BOF,
∴∠POE=∠BOP;
(2)①∵∠EOF=∠BOC=90°,
∵PO平分∠COF,
∴∠COP=∠POF,
∴∠POE=90°+∠POF,∠BOP=90°+∠COP,
∴∠POE=∠BOP;
②∵∠POE=∠BOP,∠DOP+∠BOP=270°,
∴∠POE+∠DOP=270°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】科技改變生活,手機(jī)導(dǎo)航極大方便了人們的出行,如圖,小明一家自駕到古鎮(zhèn)C游玩,到達(dá)A地后,導(dǎo)航顯示車輛應(yīng)沿北偏西60°方向行駛4千米至B地,再沿北偏東45°方向行駛一段距離到達(dá)古鎮(zhèn)C,小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,求B,C兩地的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,動(dòng)點(diǎn)A從原點(diǎn)出發(fā)向數(shù)軸負(fù)方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)B也從原點(diǎn)出發(fā)向數(shù)軸正方向運(yùn)動(dòng),2秒后,兩點(diǎn)相距16個(gè)單位長(zhǎng)度,已知?jiǎng)狱c(diǎn)A、B的速度比為1:3(速度單位:1個(gè)單位長(zhǎng)度秒).
(1)求兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)的速度;
(2)在數(shù)軸上標(biāo)出A、B兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動(dòng)2秒時(shí)的位置;
(3)若表示數(shù)0的點(diǎn)記為O,A、B兩點(diǎn)分別從(2)中標(biāo)出的位置同時(shí)向數(shù)軸負(fù)方向運(yùn)動(dòng),再經(jīng)過(guò)多長(zhǎng)時(shí)間,滿足OB=2OA?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過(guò)點(diǎn)E作EF∥AB,交BC于點(diǎn)F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形DBEF是菱形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD交于點(diǎn)O,OM⊥AB,
(1)若∠1=∠2,試判斷ON與CD的位置關(guān)系,并說(shuō)明理由.
(2)若∠1=∠BOC,試求∠MOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,OE⊥AB,OF⊥CD.
(1)若OC恰好是∠AOE的平分線,則OA是∠COF的平分線嗎?請(qǐng)說(shuō)明理由;
(2)若∠EOF=5∠BOD,求∠COE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)三國(guó)時(shí)期數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”,如圖1所示.在圖2中,若正方形ABCD的邊長(zhǎng)為14,正方形IJKL的邊長(zhǎng)為2,且IJ//AB,則正方形EFGH的邊長(zhǎng)為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次課題學(xué)習(xí)中,老師讓同學(xué)們合作編題.某學(xué)習(xí)小組受趙爽弦圖的啟發(fā),編寫(xiě)了下面這道題,請(qǐng)你來(lái)解一解.
如圖,將矩形ABCD的四邊BA、CB、DC、AD分別延長(zhǎng)至E、F、G、H,使得AE=CG,BF=DH,連結(jié)EF、FG、GH、HE.
(1)求證:四邊形EFGH為平行四邊形;
(2)若矩形ABCD是邊長(zhǎng)為1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰直角△ABC,點(diǎn)P是斜邊BC上一點(diǎn)(不與B,C重合),PE是△ABP的外接圓⊙O的直徑
(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求 的值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com