【題目】在平面直角坐標(biāo)系中,直線y=x-2x軸、y軸分別交于點B、C,半徑為1的⊙P的圓心P從點A4,m )出發(fā)以每秒個單位長度的速度沿射線AC的方向運動,設(shè)點P運動的時間為t秒,則當(dāng)t=_____秒時,⊙P與坐標(biāo)軸相切.

【答案】1,3,5

【解析】

設(shè)⊙P與坐標(biāo)軸的切點為D, 根據(jù)一次函數(shù)圖象上點的坐標(biāo)特征可得出點A、BC的坐標(biāo),即可求出ABAC的長,可得△OBC是等腰直角三角形,分⊙P只與x軸相切、與x軸、y軸同時相切、只與y軸相切三種情況,根據(jù)切線的性質(zhì)和等腰直角三角形的性質(zhì)分別求出AP的長,即可得答案.

設(shè)⊙P與坐標(biāo)軸的切點為D,

∵直線y=x-2x軸、y軸分別交于點B、C,點A坐標(biāo)為(4,m),

x=0時,y=-2,y=0時,x=2,x=4時,y=2,

A4,2),B20),C0-2),

AB=2,AC=4OB=OC=2,

∴△OBC是等腰直角三角形,∠OBC=45°,

①如圖,當(dāng)⊙P只與x軸相切時,

∵點D為切點,⊙P的半徑為1,

PDx軸,PD=1,

∴△BDP是等腰直角三角形,

BD=PD=1,

BP=,

AP=AB-BP=,

∵點P的速度為個單位長度,

t=1,

②如圖,⊙Px軸、y軸同時相切時,

同①得PB=,

AP=AB+PB=3,

∵點P的速度為個單位長度,

t=3.

③如圖,⊙P只與y軸相切時,

同①得PB=,

AP=AC+PB=5,

∵點P的速度為個單位長度,

t=5.

綜上所述:t的值為13、5時,⊙P與坐標(biāo)軸相切,

故答案為:1,3,5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校準(zhǔn)備購買若干臺型電腦和型打印機.如果購買1型電腦,2型打印機,一共需要花費6200元;如果購買2型電腦,1型打印機,一共需要花費7900元.

1)求每臺型電腦和每臺型打印機的價格分別是多少元?

2)如果學(xué)校購買型電腦和型打印機的預(yù)算費用不超過20000元,并且購買型打印機的臺數(shù)要比購買型電腦的臺數(shù)多1臺,那么該學(xué)校至多能購買多少臺型打印機?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形OABC的頂點O,By軸上,頂點A在反比例函數(shù)y=﹣上,頂點C在反比例函數(shù)y上,則平行四邊形OABC的面積是(  )

A.8B.10C.12D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸于點,交軸于點,拋物線經(jīng)過點,交軸于點,點為拋物線上一動點,過點軸的垂線,交直線于點,設(shè)點的橫坐標(biāo)為.

1)求拋物線的解析式.

2)當(dāng)點在直線下方的拋物線上運動時,求出長度的最大值.

3)當(dāng)以,,為頂點的三角形是等腰三角形時,求此時的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yx2+bx3經(jīng)過點A1,0),頂點為點M

1)求拋物線的表達(dá)式及頂點M的坐標(biāo);

2)求∠OAM的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象經(jīng)過點,與反比例函數(shù)的圖象交于點

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)設(shè)M是直線AB上一點,過MMNx軸,交反比例函數(shù)的圖象于點N,若以AO,MN為頂點的四邊形是平行四邊形,求點M的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是某公園里的一種健身器材,其側(cè)面示意圖如圖(2)所示,其中AB=AC=120cm,BC=80cm,AD=30cm,∠DAC=90°.求點D到地面的高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮玩一個游戲:三張大小、質(zhì)地都相同的卡片上分別標(biāo)有數(shù)字23,4(背面完全相同),現(xiàn)將標(biāo)有數(shù)字的一面朝下.小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計算小明和小亮抽得的兩個數(shù)字之和.若和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝.

1)請你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率.

2)你認(rèn)為這個游戲規(guī)則對雙方公平嗎?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中線段AB表示某工程的部分隧道,無人勘測飛機從隧道的一側(cè)點A出發(fā),沿著坡度為11.5的路線AE飛行,飛行至分界點C的正上方點D時,測得隧道另一側(cè)點B的俯角為23°,繼續(xù)飛行至點E,測得點B的俯角為45°,此時點E離地面的高度EF800米.

1)分別求隧道ACBC段的長度;

2)建工集團安排甲、乙兩個金牌施工隊分別從隧道兩頭向中間施工,甲隊負(fù)責(zé)AC段施工,乙隊負(fù)責(zé)BC段施工,乙每天的工作量是甲的2倍,兩隊同時開工5天后,甲隊將速度提高25%,乙隊將速度提高了150%,從而兩隊同時完成,求原計劃甲、乙兩隊每天各施工多少米.(參考數(shù)據(jù):tan23°≈0.4cos23°≈0.9

查看答案和解析>>

同步練習(xí)冊答案