【題目】如圖,⊙O過點(diǎn)B、C,圓心O在等腰直角三角形ABC的內(nèi)部,∠BAC=90°,OA=1,BC=6,則⊙O的半徑為(
A.6
B.13
C.
D.2

【答案】C
【解析】解:過O作OD⊥BC, ∵BC是⊙O的一條弦,且BC=6,
∴BD=CD= BC= ×6=3,
∴OD垂直平分BC,又AB=AC,
∴點(diǎn)A在BC的垂直平分線上,即A,O、D三點(diǎn)共線,
∵△ABC是等腰直角三角形,
∴∠ABC=45°,
∴△ABD也是等腰直角三角形,
∴AD=BD=3,
∵OA=1,
∴OD=AD﹣OA=3﹣1=2,
在Rt△OBD中,
OB= = =
故選C.

過O作OD⊥BC,由垂徑定理可知BD=CD= BC,根據(jù)△ABC是等腰直角三角形可知∠ABC=45°,故△ABD也是等腰直角三角形,BD=AD,再由OA=1可求出OD的長,在Rt△OBD中利用勾股定理即可求出OB的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長為1的一根繩,恰好可圍成兩個(gè)全等三角形,則其中一個(gè)三角形的最長邊x的取值范圍為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算。
(1)解不等式(組):3x+2≤x﹣2;
(2) 并把不等式組的解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)袋子中裝有3個(gè)紅球和2個(gè)黃球,這些球的形狀、大。|(zhì)地完全相同,在看不到球的條件下,隨機(jī)從袋子里同時(shí)摸出2個(gè)球,其中2個(gè)球的顏色相同的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價(jià)是200元/臺(tái).經(jīng)過市場銷售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400元/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300元/臺(tái),代理銷售商每月要完成不低于450臺(tái)的銷售任務(wù).
(1)試確定月銷售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
(2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.
(1)求新傳送帶AC的長度;
(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)4米的貨物MNQP是否需要挪走,并說明理由.(說明:(1)(2)的計(jì)算結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.24, ≈2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,平行四邊形ABCD在第一象限,且AB∥x軸,直線y=﹣x從原點(diǎn)出發(fā)沿x軸正方向平移,被平行四邊形ABCD截得的線段EF的長度l與平移的距離m的函數(shù)圖象如圖②,那么平行四邊形ABCD的面積為( )

A.4
B.
C.8
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電腦公司經(jīng)銷甲種型號(hào)電腦,今年三月份的電腦售價(jià)比去年同期每臺(tái)降價(jià)1000元,如果賣出相同數(shù)量的電腦,去年銷售額為10萬元,今年銷售額只有8萬元.
(1)今年三月份甲種電腦每臺(tái)售價(jià)多少元?
(2)為了增加收入,電腦公司決定再經(jīng)銷乙種型號(hào)電腦.已知甲種電腦每臺(tái)進(jìn)價(jià)為3500元,乙種電腦每臺(tái)進(jìn)價(jià)為3000元,公司預(yù)計(jì)用不多于5萬元且不少于4.8萬元的資金購進(jìn)這兩種電腦共15臺(tái),有幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,C是AB延長線上一點(diǎn),BC=OB,CE是⊙O的切線,切點(diǎn)為D,過點(diǎn)A作AE⊥CE,垂足為E,則CD:DE的值是(
A.
B.1
C.2
D.3

查看答案和解析>>

同步練習(xí)冊答案