【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點,點,點.
(Ⅰ)如圖①,求AB的長;
(Ⅱ)如圖②,把圖①中的繞點B順時針旋轉(zhuǎn),使點O的對應(yīng)點AM恰好落在OA延長線上,N是點A旋轉(zhuǎn)后的對應(yīng)點.
①求證:;②求點N的坐標(biāo);
(Ⅲ)點C是OB的中點,點D為線段OA上的動點,在繞點B順時針旋轉(zhuǎn)過程中,點D的對應(yīng)點是P,求線段CP長的取值范圍(直接寫出結(jié)果).
【答案】(Ⅰ);(Ⅱ)①見解析,②;(Ⅲ).
【解析】
(Ⅰ)過A作,垂足為C,根據(jù)點,點得出AC和BC的長,再根據(jù)勾股得出AB的長
(Ⅱ)①根據(jù)旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)等腰三角形的性質(zhì)可得,從而得出,繼而得出結(jié)論
②過N作軸,垂足為E.連接AN,根據(jù)旋轉(zhuǎn)的性質(zhì)和一組對邊平行且相等的四邊形是平行四邊形得出四邊形AOBN是平行四邊形,得出,再根據(jù)勾股定理求出BE,從而求出點N的坐標(biāo);
(Ⅲ)過B作CP⊥AO于P,以B為圓心BP為半徑畫圓交BC于P1,和以B為圓心BO為半徑畫圓交OB的延長線于P2,得出CP的最大和最小值解答即可;
解:(Ⅰ)過A作,垂足為C,
,
.
在中,
(Ⅱ)①由(I)得
由旋轉(zhuǎn)得
②過N作軸,垂足為E.連接AN
,
∴四邊形AOBN是平行四邊形。
在中,.
(III)如圖,過B作CP⊥AO于P,以B為圓心BP為半徑畫圓交BC于P1, CP1有最小值,
此時
∴BP=,∴BP1=,
∴CP1的最小值為 -3=;
以B為圓心BO為半徑畫圓交OB的延長線于P2,,CP 2有最大值;
此時CP2=BC +BP2=3+6=9.
線段CP長的取值范圍: .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c+1。
(1)當(dāng)b=1時,求這個二次函數(shù)的對稱軸的方程;
(2)若c=﹣b2﹣2b,問:b為何值時,二次函數(shù)的圖象與x軸相切?
(3)若二次函數(shù)的圖象與x軸交于點A(x1,0),B(x2,0),且x1<x2,b>0,與y軸的正半軸交于點M,以AB為直徑的半圓恰好過點M,二次函數(shù)的對稱軸l與x軸、直線BM、直線AM分別交于點D、E、F,且滿足=,求二次函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=,AB與CE交于F,ED與AB、BC分別交于M、H.
(1)求證:CF=CH;
(2)如圖(2),△ABC不動,將△EDC繞點C旋轉(zhuǎn)到∠BCE=時,試判斷四邊形ACDM是什么四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分別是BG,AC的中點.
(1)求證:DE=DF,DE⊥DF;
(2)連接EF,若AC=10,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】麗江布農(nóng)鈴,是一種極富特色的、形狀同馬幫的馬鈴的掛件.這種馬幫文化商品,是純手工制作.精致小巧的青銅鈴鐺下系有一塊圓形木塊,手繪著各種各樣的畫.某商店需要購進甲、乙兩種布農(nóng)鈴共300件,一件甲種布農(nóng)鈴進價為340元,售價為400元,一件乙種布農(nóng)鈴進價為380元,售價為460元.(注:利潤=售價-進價)
(1)若商店計劃銷售完這批布農(nóng)鈴后能獲利21600元,問甲、乙兩種布農(nóng)鈴應(yīng)分別購進多少件?
(2)若商店計劃投入資金110000元,則能購進甲種布農(nóng)鈴多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】任大叔決定在承包的荒山上種櫻桃樹,第一次用1000元購進了一批樹苗,第二次又用1000元購進該種樹苗,但這次每棵樹苗的進價是第一次進價的2倍,購進數(shù)量比第次少了100棵;
(1)求第一次每棵樹苗的進價是多少元?
(2)一年后,樹苗的成活率為85%,每棵櫻桃樹平均產(chǎn)櫻桃30斤,任大叔將兩批櫻桃樹所產(chǎn)櫻桃按同一價格全部銷售完畢后,獲利不低于89800元,求每斤櫻桃的售價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是( 。
A. a >b>c
B. 一次函數(shù)y=ax +c的圖象不經(jīng)第四象限
C. m(am+b)+b<a(m是任意實數(shù))
D. 3b+2c>0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com