【題目】麗江布農(nóng)鈴,是一種極富特色的、形狀同馬幫的馬鈴的掛件.這種馬幫文化商品,是純手工制作.精致小巧的青銅鈴鐺下系有一塊圓形木塊,手繪著各種各樣的畫.某商店需要購進甲、乙兩種布農(nóng)鈴共300件,一件甲種布農(nóng)鈴進價為340元,售價為400元,一件乙種布農(nóng)鈴進價為380元,售價為460元.(注:利潤=售價-進價)
(1)若商店計劃銷售完這批布農(nóng)鈴后能獲利21600元,問甲、乙兩種布農(nóng)鈴應分別購進多少件?
(2)若商店計劃投入資金110000元,則能購進甲種布農(nóng)鈴多少件?
【答案】(1)購進甲種布農(nóng)鈴120件,乙種布農(nóng)鈴180件;(2)購進甲種布農(nóng)鈴100件.
【解析】
(1)設購進甲種布農(nóng)鈴x件,乙種布農(nóng)鈴y件,然后進一步列出方程組求解即可;
(2)設購進甲種布農(nóng)鈴a件,則購進乙種布農(nóng)鈴件,然后進一步列出方程求解即可.
(1)設購進甲種布農(nóng)鈴x件,乙種布農(nóng)鈴y件,
則
解得
答:購進甲種布農(nóng)鈴120件,乙種布農(nóng)鈴180件;
(2)設購進甲種布農(nóng)鈴a件,則購進乙種布農(nóng)鈴件,
根據(jù)題意得,
解得,
答:購進甲種布農(nóng)鈴100件.
科目:初中數(shù)學 來源: 題型:
【題目】某廣場有一個小型噴泉,水流從垂直于地面的水管OA噴出,OA長為1.5米.水流在各個方向上沿形狀相同的拋物線路徑落到地面上,某方向上拋物線路徑的形狀如圖所示,落點B到O的距離為3米.建立平面直角坐標系,水流噴出的高度y(米)與水平距離x(米)之間近似滿足函數(shù)關系
(1)求y與x之間的函數(shù)關系式;
(2)求水流噴出的最大高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某食品零售店為食品廠代銷一種面包,未售出的面包可以退回廠家.經(jīng)統(tǒng)計銷售情況發(fā)現(xiàn),當這種面包的銷售單價為7角時,每天賣出160個.在此基礎上.單價每提高1角時,該零售店每天就會少賣出20個面包.設這種面包的銷售單價為x角(每個面包的成本是5角).零售店每天銷售這種面包的利潤為y角.
(1)用含x的代數(shù)式分別表示出每個面包的利潤與賣出的面包個數(shù);
(2)求x與y之間的函數(shù)關系式:
(3)當這種面包的銷售單價定為多少時,該零售店每天銷售這種面包獲得的利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,為坐標原點,點,點.
(Ⅰ)如圖①,求AB的長;
(Ⅱ)如圖②,把圖①中的繞點B順時針旋轉,使點O的對應點AM恰好落在OA延長線上,N是點A旋轉后的對應點.
①求證:;②求點N的坐標;
(Ⅲ)點C是OB的中點,點D為線段OA上的動點,在繞點B順時針旋轉過程中,點D的對應點是P,求線段CP長的取值范圍(直接寫出結果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.
(1)求每臺A型電腦和B型電腦的銷售利潤;
(2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.
①求y關于x的函數(shù)關系式;
②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?
(3)實際進貨時,廠家對A型電腦出廠價下調m(0<m<100)元,且限定商店最多購進A型電腦70臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=3,E是邊AB上一點,將△CBE沿直線CE對折,得到△CFE,連接DF.
(1)當D、E、F三點共線時,證明:DE=CD;
(2)當BE=1時,求△CDF的面積;
(3)若射線DF交線段AB于點P,求BP的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,一次函數(shù)y=x﹣1的圖象與x軸,y軸分別交于點A,B,與反比例函數(shù)y=的圖象交于點C,D,CE⊥x軸于點E,.
(1)求反比例函數(shù)的表達式與點D的坐標;
(2)以CE為邊作ECMN,點M在一次函數(shù)y=x﹣1的圖象上,設點M的橫坐標為a,當邊MN與反比例函數(shù)y=的圖象有公共點時,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分10分)
如圖,矩形AOCB的頂點A、C分別位于x軸和y軸的正半軸上,線段OA、OC的長度滿足方程|x-15|+=0(OB>OC),直線y=kx+b分別與x軸、y軸交于M、N兩點,連接BN.將△BCN沿直線BN折疊,點C恰好落在直線MN上的點D處,且tan∠CBD=.
⑴ 求點B的坐標.
⑵ 求直線BN的解析式.
⑶ 將直線BN以每秒1個單位長度的速度沿y軸向下平移,求直線BN掃過矩形AOCB的面積S關于運動的時間t(0<t≤13)的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形為的內(nèi)接四邊形,直徑與對角線相交于點,作于,與過點的直線相交于點,.
(1)求證:為的切線;
(2)若平分,求證:;
(3)在(2)的條件下,為的中點,連接,若,的半徑為,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com