【題目】如圖,正方形中,是對(duì)角線上一個(gè)動(dòng)點(diǎn),連結(jié),過(guò),,

,分別為垂足.

1)求證:;

2)①寫(xiě)出、、三條線段滿足的等量關(guān)系,并證明;②求當(dāng)時(shí),的長(zhǎng)

【答案】1)見(jiàn)解析;(2)①GE2GF2AG2,證明見(jiàn)解析;②的長(zhǎng)為

【解析】

1)根據(jù)正方形的性質(zhì)得出△DGE和△BGF是等腰直角三角形,可得GEDG,GFBG,結(jié)合ABBD即可得出結(jié)論;

2)①連接CG,由SAS證明△ABG≌△CBG,得出AGCG,證出四邊形EGFC是矩形,得出CEGF,由勾股定理即可得出GE2GF2AG2

②設(shè)GECFx,則GFBF6x,由①中結(jié)論得出方程求出CF1CF5,再分情況討論,由勾股定理求出BG即可.

解:(1)∵四邊形ABCD為正方形,

∴∠BCD90°,∠ABD=∠CDB=∠CBD45°,ABBCCD,

∴△ABD是等腰直角三角形,

ABBD,

GECD,GFBC,

∴△DGE和△BGF是等腰直角三角形,

GEDG,GFBG,

GEGFDGBG)=BD,

GEGFAB;

2)①GE2GF2AG2,

證明:連接CG,如圖所示:

在△ABG和△CBG中,

∴△ABG≌△CBGSAS),

AGCG,

GECDGFBC,∠BCD90°,

∴四邊形EGFC是矩形,

CEGF,

GE2CE2CG2,

GE2GF2AG2

②設(shè)GECFx,則GFBF6x

GE2GF2AG2,

,

解得:x1x5

當(dāng)x1時(shí),則BFGF5,

BG,

當(dāng)x5時(shí),則BFGF1,

BG

綜上,的長(zhǎng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用表示直角三角形的兩直角邊(),下列四個(gè)說(shuō)法:

,,.

其中說(shuō)法正確的是 …………………………………………………………( )

A. ①② B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著移動(dòng)計(jì)算技術(shù)和無(wú)線網(wǎng)絡(luò)的快速發(fā)展,移動(dòng)學(xué)習(xí)方式越來(lái)越引起人們的關(guān)注,某校計(jì)劃將這種學(xué)習(xí)方式應(yīng)用到教育學(xué)中,從全校1500名學(xué)生中隨機(jī)抽取了部分學(xué)生,對(duì)其家庭中擁有的移動(dòng)設(shè)備的情況進(jìn)行調(diào)查,并繪制出如下的統(tǒng)計(jì)圖①和圖②,根據(jù)相關(guān)信息,解答下列問(wèn)題:

(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為   ,圖①中m的值為   

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校1500名學(xué)生家庭中擁有3臺(tái)移動(dòng)設(shè)備的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,,邊上一點(diǎn),連接,將沿翻折,點(diǎn)的對(duì)應(yīng)點(diǎn)是,連接,當(dāng)是直角三角形時(shí),則的值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過(guò)點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0).點(diǎn)P是直線BC上方的拋物線上一動(dòng)點(diǎn).

(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;

(2)連接PO,PC,并把POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ACPB的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=BC=2,ABC=120°,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1BAC于點(diǎn)E,A1C1分別交AC、BCD、F兩點(diǎn).

(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過(guò)程中,線段BEBF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;

(2)如圖2,當(dāng)α=30°時(shí),試判斷四邊形BC1DA的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)DABC的邊AC上,要判定ADBABC相似,添加一個(gè)條件,不正確的是( 。

A. ABD=C B. ADB=ABC C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(5,)、點(diǎn)B(9,﹣10),與y軸交于點(diǎn)C,點(diǎn)P是直線AC上方拋物線上的一個(gè)動(dòng)點(diǎn);

(1)求拋物線對(duì)應(yīng)的函數(shù)解析式;

(2)過(guò)點(diǎn)P且與y軸平行的直線l與直線BC交于點(diǎn)E,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3)當(dāng)∠PCB=90°時(shí),作∠PCB的角平分線,交拋物線于點(diǎn)F.

①求點(diǎn)P和點(diǎn)F的坐標(biāo);

②在直線CF上是否存在點(diǎn)Q,使得以F、P、Q為頂點(diǎn)的三角形與BCF相似,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,所對(duì)邊分別是,且,若滿足,則稱為奇異三角形,例如等邊三角形就是奇異三角形.

(1)若,判斷是否為奇異三角形,并說(shuō)明理由;

(2)若,,求的長(zhǎng);

(3)如圖2,在奇異三角形中,,點(diǎn)邊上的中點(diǎn),連結(jié),分割成2個(gè)三角形,其中是奇異三角形,是以為底的等腰三角形,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案