【題目】古希臘時(shí)期,人們認(rèn)為最美人體的頭頂至肚臍的長(zhǎng)度與肚臍至足底的長(zhǎng)度之比是黃金分割比(黃金分割比0.618)著名的“斷臂維納斯”便是如此.此外最美人體的頭頂至咽喉的長(zhǎng)度與咽喉至肚臍的長(zhǎng)度之比也是黃金分割比.若某人滿足上述兩個(gè)黃金分割比例,且腿長(zhǎng)為103cm,頭頂至脖子下端的長(zhǎng)度為25cm,則其身高可能是( )
A.165cmB.170cmC.175cmD.180cm
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),點(diǎn)P是線段AB上異于A、B的動(dòng)點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)D,交拋物線于點(diǎn)C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點(diǎn),使線段PC的長(zhǎng)有最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)假若△PAC為直角三角形,直接寫(xiě)出點(diǎn)P坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】、兩組卡片共張,中三張分別寫(xiě)有數(shù)字,,,中兩張分別寫(xiě)有,.它們除了數(shù)字外沒(méi)有任何區(qū)別.
隨機(jī)地從中抽取一張,求抽到數(shù)字為的概率;
隨機(jī)地分別從、中各抽取一張,請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法表示所有等可能的結(jié)果,現(xiàn)制定這樣一個(gè)游戲規(guī)則:若選出的兩數(shù)之積為的倍數(shù),則甲獲勝;否則乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則對(duì)甲乙雙方公平嗎?為什么?
如果不公平請(qǐng)你修改游戲規(guī)則使游戲規(guī)則對(duì)甲乙雙方公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:AB為⊙O的弦(非直徑),E為AB的中點(diǎn),EO的延長(zhǎng)線與⊙O相交于C,CM∥AB,BO的延長(zhǎng)線與⊙O相交于F,與CM相交于D.
①求證:EC⊥CD;
②當(dāng)EO:OC=1:3,CD=4時(shí),求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,直線l與⊙O相切于點(diǎn)D,且l∥BC
(1)求證:AD平分∠BAC
(2)作∠ABC的平分線BE交AD于點(diǎn)E,求證:BD=DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解下列方程.
(1)x2﹣14x=8(配方法)
(2)x2﹣7x﹣18=0(公式法)
(3)(2x+3)2=4(2x+3)(因式分解法)
(4)2(x﹣3)2=x2﹣9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若長(zhǎng)方形的長(zhǎng)為,寬為,面積為10,則與的函數(shù)關(guān)系用圖象表示大致為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為(2,1),(﹣1,3),(﹣3,2).
(1)在圖中作出△ABC關(guān)于x軸對(duì)稱的△A′B′C′,并寫(xiě)出點(diǎn)A′的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ,點(diǎn)C′的坐標(biāo)為 ;
(2)求△ABC的面積;
(3)若點(diǎn)P(a,a﹣2)與點(diǎn)Q關(guān)于y軸對(duì)稱,若PQ=8,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,△ABC的角平分線AD、BE相交于點(diǎn)P,過(guò)P點(diǎn)作PF⊥AD交BC的延長(zhǎng)線于點(diǎn)F,交AC于點(diǎn)H.(1)∠APB的度數(shù)為_(kāi)______°;(2)求證:△ABP≌△FBP;(3)求證:AH+BD=AB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com