【題目】如圖,E、F分別是矩形ABCD的邊AB、BC的中點,連AF,CE,AF、CE交于G,則四邊形BEGF與四邊形ADCG的面積的比值為___________.
科目:初中數(shù)學 來源: 題型:
【題目】為了提高科技創(chuàng)新意識,我市某中學在“2018年科技節(jié)”活動中舉行科技比賽,包括“航模”、“機器人”、“環(huán)保”、“建模”四個類別(每個學生只能參加一個類別的比賽),根據(jù)各類別參賽人數(shù)制成不完全的條形統(tǒng)計圖和扇形統(tǒng)計圖如下:
請根據(jù)以上圖品信息,解答下列問題:
(1)全體參賽的學生共有_______人,扇形統(tǒng)計圖中“建模”所在扇形的圓心角是_______°;
(2)將條形統(tǒng)計圖補充完整;
(3)在比賽結(jié)果中,獲得“環(huán)保”類一等獎的學生為1名男生和2名女生,獲得“建模”類一等獎的學生為1名男生和1名女生.現(xiàn)從這兩類獲得一等獎的學生中各隨機選取1名學生參加市級“環(huán)保建模”考察活動.則選取的兩人中恰為1名男生1名女生的概率是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)1﹣12+4
(2)﹣7﹣(﹣5)2÷(﹣1)2
(3)
(4)
(5)(用科學記數(shù)法表示)8.56×102﹣2.1×103
(6)用簡便方法計算:﹣99×48
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某檢修小組從地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負,一天中七次行駛紀錄如下.(單位:)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
(1)在第__________次記錄時距地最遠;
(2)求收工時距地多遠?
(3)若每千米耗油升,每升汽油需元,問檢修小組工作一天需汽油費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正比例函數(shù)y=x的圖象與反比例函數(shù)y=(k≠0)在第一象限的圖象交于A點,過A點作x軸的垂線AM,垂足為M,已知△OAM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)求點A的坐標;
(3)如果B為反比例函數(shù)在第一象限圖象上的點(點B與點A不重合),且B點的橫坐標為1,在x軸上確定一點P,使PA+PB最。簏cP的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點P為四邊形ABCD所在平面上的點,如果∠PAD=∠PBC,則稱點P為四邊形ABCD關于A、B的等角點,以點C為坐標原點,BC所在直線為軸建立平面直角坐標系,點B的橫坐標為﹣6.
(1)如圖2,若A、D兩點的坐標分別為A(﹣6,4)、D(0,4),點P在DC邊上,且點P為四邊形ABCD關于A、B的等角點,則點P的坐標為 _________ ;
(2)如圖3,若A、D兩點的坐標分別為A(﹣2,4)、D(0,4).
①若P在DC邊上時,則四邊形ABCD關于A、B的等角點P的坐標為 _________ ;
②在①的條件下,將PB沿軸向右平移個單位長度(0<<6)得到線段P′B′,連接P′D,B′D,試用含的式子表示P′D2+B′D2,并求出使P′D2+B′D2取得最小值時點P′的坐標;
③如圖4,若點P為四邊形ABCD關于A、B的等角點,且點P坐標為(1, ),求的值;
④以四邊形ABCD的一邊為邊畫四邊形,所畫的四邊形與四邊形ABCD有公共部分,若在所畫的四邊形內(nèi)存在一點P,使點P分別是各相鄰兩頂點的等角點,且四對等角都相等,請直接寫出所有滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016四川省達州市)如圖,P是等邊三角形ABC內(nèi)一點,將線段AP繞點A順時針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上,點O為原點,點A對應的數(shù)為9,點B對應的數(shù)為b,點C在點B右側(cè),長度為2個單位的線段BC在數(shù)軸上移動.
(1)當b=5時,試求線段AC的長;
(2)當線段BC在數(shù)軸上沿射線AO方向移動的過程中,若存在AC﹣OB=AB,求此時滿足條件的b值.
(3)當線段BC在數(shù)軸上移動時,滿足關系式|AC﹣OB|=|AB﹣OC|,則此時的b的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com