【題目】如圖,EF分別是矩形ABCD的邊AB、BC的中點,連AF,CE,AF、CE交于G,則四邊形BEGF與四邊形ADCG的面積的比值為___________.

【答案】1:4

【解析】過點GAB、BC的垂線,連接BG,AC,

S矩形ABCD=ABBC,

SBCE=ABBC,SABF=ABBC

S△AEG=S△GCF,即AEGN=CFGM,

S四邊形GEBF=SBEG+SBFG=BEGN+BFGM=2SAEG=2SGCF,

SBCE=3SGCF=ABBC

S四邊形GEBF=2SGCF=ABBC,

S四邊形ADCG=S矩形ABCD-S△AEG-S△BCE=ABBC-ABBC-ABBC=ABBC

∴S四邊形GEBF:S四邊形ADCG=1:4,

故答案為:1:4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程

1  2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高科技創(chuàng)新意識,我市某中學在“2018年科技節(jié)活動中舉行科技比賽,包括航模、機器人、環(huán)保、建模四個類別(每個學生只能參加一個類別的比賽),根據(jù)各類別參賽人數(shù)制成不完全的條形統(tǒng)計圖和扇形統(tǒng)計圖如下:

請根據(jù)以上圖品信息,解答下列問題:

(1)全體參賽的學生共有_______人,扇形統(tǒng)計圖中建模所在扇形的圓心角是_______°;

(2)將條形統(tǒng)計圖補充完整;

(3)在比賽結(jié)果中,獲得環(huán)保類一等獎的學生為1名男生和2名女生,獲得建模類一等獎的學生為1名男生和1名女生.現(xiàn)從這兩類獲得一等獎的學生中各隨機選取1名學生參加市級環(huán)保建模考察活動.則選取的兩人中恰為1名男生1名女生的概率是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

1112+4

2)﹣7﹣(﹣52÷(﹣12

3

4

5)(用科學記數(shù)法表示)8.56×1022.1×103

6)用簡便方法計算:﹣99×48

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某檢修小組從地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負,一天中七次行駛紀錄如下.(單位:

第一次

第二次

第三次

第四次

第五次

第六次

第七次

1)在第__________次記錄時距地最遠;

2)求收工時距地多遠?

3)若每千米耗油升,每升汽油需元,問檢修小組工作一天需汽油費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正比例函數(shù)y=x的圖象與反比例函數(shù)y=k0)在第一象限的圖象交于A點,過A點作x軸的垂線AM,垂足為M,已知OAM的面積為1

1)求反比例函數(shù)的解析式;

2)求點A的坐標;

3)如果B為反比例函數(shù)在第一象限圖象上的點(點B與點A不重合),且B點的橫坐標為1,在x軸上確定一點P,使PA+PB最。簏cP的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點P為四邊形ABCD所在平面上的點,如果∠PAD=PBC,則稱點P為四邊形ABCD關于A、B的等角點,以點C為坐標原點,BC所在直線為軸建立平面直角坐標系,點B的橫坐標為﹣6

1)如圖2,若A、D兩點的坐標分別為A﹣6,4)、D0,4),點PDC邊上,且點P為四邊形ABCD關于A、B的等角點,則點P的坐標為 _________ ;

2)如圖3,若A、D兩點的坐標分別為A﹣2,4)、D04).

①若PDC邊上時,則四邊形ABCD關于AB的等角點P的坐標為 _________ ;

②在①的條件下,將PB沿軸向右平移個單位長度(06)得到線段PB,連接PD,BD,試用含的式子表示PD2+BD2,并求出使PD2+BD2取得最小值時點P的坐標;

③如圖4,若點P為四邊形ABCD關于AB的等角點,且點P坐標為(1, ),求的值;

④以四邊形ABCD的一邊為邊畫四邊形,所畫的四邊形與四邊形ABCD有公共部分,若在所畫的四邊形內(nèi)存在一點P,使點P分別是各相鄰兩頂點的等角點,且四對等角都相等,請直接寫出所有滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016四川省達州市如圖,P是等邊三角形ABC內(nèi)一點,將線段AP繞點A順時針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上,點O為原點,點A對應的數(shù)為9,點B對應的數(shù)為b,點C在點B右側(cè),長度為2個單位的線段BC在數(shù)軸上移動.

1)當b5時,試求線段AC的長;

2)當線段BC在數(shù)軸上沿射線AO方向移動的過程中,若存在ACOBAB,求此時滿足條件的b值.

3)當線段BC在數(shù)軸上移動時,滿足關系式|ACOB||ABOC|,則此時的b的取值范圍是   

查看答案和解析>>

同步練習冊答案